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Abstract
Cyber-Physical Systems (CPS) integrate computational al-
gorithms and physical components, requiring sophisticated
modelling techniques to address complex interactions and dy-
namics. This paper explores the creation of Domain-Specific
Languages (DSLs) tailored for CPS, focusing on the initial
three critical phases: decision, analysis, design. We present
four key aspects to address in the decision phase, design
an ontology as a domain model for the analysis phase, and
collect some advice for the design phase. By systematically
addressing these phases, we provide a comprehensive frame-
work for developing DSLs that can efficiently model CPS,
facilitating improved design, verification, and deployment
of these intricate systems.

CCS Concepts: • Software and its engineering → Do-
main specific languages; Interoperability;Design languages;
• Information systems → Ontologies; • Networks →
Network protocol design.
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1 Introduction
Cyber-Physical Systems (CPS) represent collaborations of
computational algorithms and physical components [61], cre-
ating a network where digital systems monitor and control
physical processes through sensors and actuators. These sys-
tems form a feedback loop where sensor data informs com-
putational decisions, and actuators execute these decisions
to affect the physical environment. Examples of CPS include
smart grids, autonomous vehicles, and advanced medical
monitoring systems [66, 83]. CPS hold substantial potential
across diverse domains such as smart manufacturing, robot-
ics, healthcare, intelligent transportation, and smart cities,
offering benefits like enhanced automation, improved safety,
and optimised resource usage [35, 42, 61, 72].
Realising the full potential of CPS poses significant chal-

lenges due to their inherent complexity and heterogene-
ity [83]. Integrating the continuous, concurrent physical
world with the discrete, sequential cyber world often leads to
non-deterministic behaviours, complicating the development
of reliable and dependable models. Model-Driven Engineer-
ing (MDE) addresses these complexities by breaking down
CPS into manageable components, yet the intricacies of such
systems demand specialised modelling approaches [22].

Domain-Specific Languages (DSLs) offer a promising solu-
tion for CPS modelling by providing tailored notations and
constructs specific to the domain [23, 87]. Unlike general-
purpose languages (GPLs), DSLs can encapsulate domain-
specific knowledge, simplifying the modelling process and
enhancing communication between domain experts and de-
velopers [59]. For instance, UML and VHDL are well-known
DSLs in their respective domains.

It is known from prior work that DSL development can be
conceptually split into phases of decision, analysis, design
and implementation [60]. By addressing these phases, we
wish to provide a comprehensive framework for developing
DSLs that can efficiently model CPS. Essentially we want the
answers to the following research questions:
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RQ1: What are critical aspects that DSLs must address
to ensure that modelling and implementation of CPS to be
most effective?

RQ2: How can we analyse and model the CPS domain to
understand the foundational concepts and relationships that
underpin these systems?

RQ3:What aspects are important to address for the design
of the DSLs for CPS?

Thus, the paper focuses on the creation of DSLs specifically
for the CPS domain, emphasising the initial three phases:
decision, analysis and design. For RQ1 and the decision phase,
we identify four critical aspects that DSLs for CPS must ad-
dress to ensure effective modelling and implementation. RQ2
and the analysis phase involve an ontological examination
of the CPS domain to understand the foundational concepts
and relationships that underpin these systems. Finally, for
RQ3 and the design phase we list a few pieces of DSL design
advice that seem applicable, and evaluate the impact of vari-
ous computational models on the structure and functionality
of DSLs. We skip over the implementation phase because it is
(1) not that different for CPS compared to other domains;

and
(2) either not that different from implementation of GPLs,

or
(3) is done with language workbenches which are rela-

tively well studied elsewhere [16, 24–26].
This paper is but a first humble step in the desired direc-

tion, and even though we will constantly bring up existing
DSLs to highlight effective practices and methodologies, for
the moment we avoid passing any judgement on them with
respect to applicability, effectiveness, compatibility and other
aspects, since that requires deeper examination and solid
experiments. Ultimately, with this paper we make a contribu-
tion to the field of language engineering by offering insights
and methodologies for creating specialised languages that
enhance the modelling and development of CPS.

2 Decision Phase (RQ1)
Cyber-physical systems are complex and multidisciplinary,
and thus challenging to build, however desirable they might
be as a solution. Models are a promising solution to address-
ing this as they make it possible to break down complex
systems and make concerns understandable and analysable.
Models in software engineering can serve various purposes
from code generation, system documentation, construction
of the system, exploration of solution possibilities etc [22].
This phase helps to assess if creating a DSL is justified by
providing evaluation criteria.
Important requirements for cyber-physical systems are

interoperability, predictability, reliability, and dependabil-
ity [35]. Interoperability refers to the ability of different com-
ponents to work together. The other three are related to each
other: dependability refers to the property of a system to

perform functions without degradation in performance and
outcome, predictability refers to the degree of being able to
foresee a system’s behaviour, and reliability refers to the
degree of correctness in functioning. All three are related to
the overall functioning of the system.
However, due to the complexity and heterogeneity of

cyber-physical systems, modelling itself presents several
difficulties. Physical processes and computational elements
require different ways of modelling, timing becomes more
crucial, various distributed behaviours arise, and compo-
nents are heterogeneous and interconnected. A model must
meet the requirements of reliability, predictability, depend-
ability and interoperability all while correctly expressing the
properties of the system.
The first issue in modelling CPS stems from the fact that

the physical world is continuous and concurrent where many
things are happening all at once, whereas the cyber one
is discrete and sequential [43]. Thus, different modelling
methods are utilised for the two parts of the system. For
example, continuous-time models of dynamics are good at
modelling physical processes, while state machines are good
for modelling computations. However, integrating these two
modelling paradigms is difficult [52] because it can lead to
incompatibilities during the separate design processes or
non-deterministic behaviour [23, 53]. Therefore, this is an
issue that a CPS model must be able to address. For example,
a CPS can be modelled as a hybrid system [23, 43, 92].
Another essential problem for CPS is that most models

are unequipped to deal with timing semantics. Such seman-
tics are crucial [43, 51, 53] due to the interaction with the
real world, where time cannot be abstracted away as in the
sequential cyber world. At the moment, models generally fo-
cus on increasing performance at the expense of predictabil-
ity [43, 51] — caches, for example, are unpredictable but lead
to faster execution times. This is perfectly acceptable for
sequential programs but not so ideal for CPS. For example,
if an executable model is a C program, then this program
by itself provides no meaningful timing semantics, and the
programmer must find ways around that obstacle, but meth-
ods for increased performance are plentiful. This is a failure
of abstraction as the model is unequipped to deal with be-
haviour essential to the system. One key requirement for a
CPS model is that it must be predictable, meaning it must
have precise expressions of time rather than depending on
the implementation (like a C program) to provide them.
The interaction between the physical and cyber parts of

the system itself takes time. Data is not transmitted in zero
time, there are network delays, components are separated in
space, and computations take time [23]. This also necessitates
solutions such as communication semantics, synchronous
or asynchronous message transmissions and timestamps.

CPS are also complex and made up of multiple interacting
components. Components are highly interconnected, and
models of a CPS might grow more complex with time [23].
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To be able to meet the previously mentioned requirements, a
model should make it possible to ensure those components
work together as intended. A given model must also be re-
liable when small deviations from the expected operation
occur [51]. Dealing with unexpected deviations can happen
at higher or lower levels, and a CPS model must contain
enough knowledge for it to be reliable [50] especially since
many CPS are safety-critical systems [43]. The most obvious
example of safety-critical systems are medical devices.

For the remainder of this section, we focus on four impor-
tant aspects, one per subsection, providing motivation for
them, as well as exemplifying them with existing languages
that already implement them.

2.1 Specify How Components Work Together
Interoperability is one of the crucial requirements for CPS [35].
CPS are complex and intertwined systems; in order for a CPS
to function correctly, its interconnected components must
work together as intended. A DSL for CPS should make it
possible to achieve this by implementing the ability to specify
how the parts should work together and interact.
aDSL [12] is a language specifically focused around in-

teroperability. The language models all the systems that a
CPS is composed of, which themselves can be further broken
down into systems or concrete parts. Parts and systems both
have different requirements. For example, speed can be a
requirement defined for a certain tractor part. Systems and
parts only operate if the requirements are met. The DSL im-
plements a way to define components recursively — a system
can be composed of subsystems which might be composed
of subsubsystems etc. — and constraints for the systems.
Chariot [71] is a DSL focused on clear separation of con-

cerns between computation and communication, along with
explicit definitions for system goals, objectives, and function-
alities. Given that communication is a major challenge in
CPS [23], Chariot supports heterogeneous communication
middleware by maintaining a distinct separation between
communication and computation logic. Chariot can express
independent communication patterns, the system’s overall
state, available resources, known faults, as well as corre-
sponding goals, objectives, and functionalities.

For the integration of sensors specifically, there is SensOr
Interfacing Language (SOIL) [14]. It is a graphical domain-
specific programming language for defining sensor inter-
faces. It models them as trees and specifies the information
physically sensed by the sensor, any data required for opera-
tion, and functions that trigger tasks or change the internal
state of the sensor. SOIL allows for the easy definition of
required interactions between different components and the
communication of measurement results.

MuScADeL [15] is a DSL for the deployment of multi-scale
systems. Multi-scale systems are highly heterogeneous sys-
tems and are composed of various components and families

of components that interact together. While not directly re-
lated to CPS, both are complex systems of many components
that must interact as required. In a DSL we should be able
to list components, the dependencies of each component,
as well as any constraints that need to be satisfied. A less
relevant feature is the ability to define probes, which collect
data about the system for the purpose of deployment.
Chauhan et al [20] developed a framework for creating

CPS with modelling languages. They aim to address issues
such as complexity due to CPS consisting of various en-
tities like sensors and actuators, differences in platforms
that components run on, and various types of interactions
components can have. Their framework allows for specify-
ing domain-specific constructs like sensors, actuators, tags,
and storage. Sensors can be periodic (sample data at reg-
ular intervals), event-driven (have activation triggers), or
request-based (responding to users). It also supports compu-
tational services for generating results from measurements,
issuing system requests, and executing commands. It also
includes options for user interactions, such as notifications,
and deployment specifications. Overall, it enables defining
components, sensor types, computation methods, system
interactions, and deployment options.
On a more concrete level, common features in DSLs im-

plementing the ability to specify how components work
together are constraints and requirements, the ability to de-
fine the individual components and their characteristics or
functionalities, communication protocols, states and descrip-
tions of how changes in state are triggered, and interactions
between components. Structures such as graphs might also
be used to better model interactions between components
of the system.

2.2 Define Flow of Operation
In a CPS, computational elements control or monitor physi-
cal processes. A DSL can facilitate this by making it possible
to specify what to control or monitor and the appropriate
responses to changes in the physical world. For example, if
some part of the system reaches a certain temperature, a
model can define an appropriate action (such as shutting
down the system to prevent overheating) or implement con-
straints (such as the safety limit).

AMon [85] is a DSL that monitors different states and pro-
vides definitions for the data flow within the CPS. It allows
modellers to define various rules for the system, sample data
with given frequency, specify which devices check for which
rules and monitor what data, limit rules to certain devices
or the entire system, etc. AMon is ideal for adaptive moni-
toring of CPS and defining the general flow of data between
components.
Hoyos et al [38] developed a DSL for context-aware sys-

tems that interpret the context and modify the system based
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on it. This is donewith context sensors, which brings context-
aware systems into CPS. The proposed language models en-
tities (people or objects) and their context, with attributes
(such as the location and time) and the source of that context
(e.g., GPS or a clock, active with certain accuracy). Rules
define which actions to take based on context facts. The DSL
can also deal with the problem of sensors not being fully
reliable with a notion of context quality.
Another option is task-oriented programming. Steenvo-

orden et al [80] give a formalisation of task-oriented pro-
gramming. Tasks are interactive units of work based on
information sources. Koopman et al [46] present an exam-
ple DSL. It uses lightweight threads that produce immediate
results after each evaluated step. There is a well-defined eval-
uation order of tasks, which can communicate via shared
data sources. Tasks can be delayed, executed simultaneously,
be sequentially ordered, or act based on the output of other
tasks. The last part means the DSL is capable of reacting
to the physical environment. The delays give the language
some very basic timing semantics.

There are various features languages in this category im-
plement. Examples include rules to changes in the physical
world with the accompanying action to execute, definitions
of states, specifying which components monitor what, and
tasks and their timing of execution.

2.3 Express Timing Semantics
Timing is of crucial importance to cyber-physical systems.
Tasks must execute and finish at the correct time and order.
Unlike software systems, a process taking too long does not
just impact the performance of the application but might
very well be incorrect behaviour for the system. For exam-
ple, it is critical that a self-driving car applies the brakes at
just the right time and not too late; failing to do so might
well be catastrophic. In a CPS that directly controls some
physical process a delay in time is in many circumstances un-
acceptable, especially in a safety-critical system. This means
that a DSL must have some form of timing semantics to
introduce things like delays, deadlines, actions happening
simultaneously, and just general task scheduling.
Triton [88] is a DSL with real-time scheduling. It defines

scheduling blocks which contain tasks and are parametrised
by time. It additionally implements constraints and defines
the appropriate action in case a violation of the constraint
occurs. For example, using the DSL one can schedule a task to
happen in 4 milliseconds. However, in case the thermometer
reaches a certain value, the task can be permanently stopped
from executing or skipped until the temperature is within
normal range again.

Lohstroh et al [55] proposed a language that implements
timing semantics. The language accomplishes this by tak-
ing into account the relationship between logical time and
physical time and specifying program behaviour by this re-
lationship. It makes use of timestamps to create a “logical

timeline” to deal with the problem of clock synchronisa-
tion that leads to a different “physical timeline” for different
components in a system. Furthermore, periodic and once-off
timers can be specified to trigger certain functions, delays
can be induced, actions can be scheduled, and deadlines put
in place for some events.

Goknil and Peraldi-Frati [28] present another DSL for spec-
ifying four types of timing requirements: delay requirements,
synchronisation requirements, repetition requirements, and
periodic requirements. All timing requirements interact with
certain events or state changes. For example, a delay require-
ment describes how occurrences of a target event are placed
relative to a source event. This means that a target event
happens a certain amount of time after a source event, i.e. it
is delayed. Synchronisation requirements refer to how close
events can happen to each other (e.g. at the same time), repe-
tition requirements give some limits to how often events can
occur, and period requirements describe how often certain
events are repeated. The language also addresses aspects of
timing requirements such as time base, dimension, equations
and variables and allows for their explicit modelling.

There are many different ways to implement timing con-
straints. Possible concrete features in this category are task
scheduling, timelines, timestamps, and different ways to time
something (whether periodically, a certain amount of time af-
ter some event, at the same time as some event, etc). Timing
semantics are very closely related to the data flow feature
because timing semantics arise precisely due to interactions
with the physical world [18], especially when basing timing
on a certain event in the physical world.

2.4 Combine Discrete with Continuous
A DSL must have a way to capture what is happening in the
physical part of the system. However, the physical world is
continuous and must be modelled as such. Unfortunately,
this leads to incompatibilities with the model of the rest of
the system which is discrete. Thus, a DSL must capture and
model the physical world in a way that avoids this issue —
by appropriately modelling the whole system as a hybrid
one for example. This is a complex task but there are many
options to choose from when constructing a solution.
CREST [45] is a DSL for hybrid systems modelling. It is

created specifically for modelling CPS whose components
“primarily interact through the exchange of physical resource
flows such as water, heat or electricity” — that is, continu-
ous resource flows. It accomplishes this through the use of
modelling techniques such as hybrid automata, data-flow
languages, and architecture description languages. CREST
defines both diagrams for visual representation, and an in-
ternal DSL based on Python.
Another solution is xSHS [33], an executable domain-

specific language that models the hybrid behaviour of cyber-
physical systems. In this example, states in the model are
captured also by ordinary differential equations in order to



Modelling of CPS through DSL: Decision, Analysis, Design MODELS Companion ’24, September 22–27, 2024, Linz, Austria

model the continuous behaviour of physical processes. It also
has semantics for representing transitions between states
and physical environment variables.

Diderot [44] is a DSL for scientific visualisation and image
analysis. Its relevance comes from the fact that it supports the
abstractions of continuous scalars. Similarly to CPS, most
general-purpose programming language do not have the
necessary abstractions for anything non-discrete andDiderot
serves as a useful starting point to creating abstractions of
more complicated mathematical operations.
Overall, representing a continuous, physical world in a

DSL is complicated and requires the use of formalisms. For-
malisms are mathematical objects consisting of abstract syn-
tax and a formal semantics, of which the languages are a
concrete implementation [18]. For example, xSHS made use
of ordinary differential equations [33] and CREST made use
of hybrid automata [45]. Implementing this last feature re-
quires expertise on modelling physical systems as opposed
to concrete features that can be described semantically.

2.5 Takeaways for RQ1
The most important aspects that we could identify, as inter-
operability (§ 2.1), explicit flow of operations (§ 2.2), having
timing semantics (§ 2.3) and combining the discrete with
the continuous (§ 2.4). These seem to correspond to both
examples in the existing literature and the current wishes
of our industrial partners. Further investigation is needed in
the form of both detailed interviews with domain experts, as
well as systematic literature reviews, to validate and refine
this set of aspects.

3 Analysis Phase (RQ2)
Once the architectural decisions have been taken, the cre-
ation of a DSL proceeds by analysing the relevant domain [60].
This domain must be captured by the language vocabulary
of the DSL such that all domain constructs can be expressed.
From this point on, it is useful to start splitting the language
into its syntax and semantics: the syntax prescribing what
symbols are allowed in expressions of the language and
how they can be combined into well-formed constructs; and
the semantics defining the meaning and/or the behaviour
of these symbols and their combinations. Some approaches
also explicitly split semantics into the semantic domain of
all possible meanings that can potentially be created with
this language and the semantic mapping from syntax to this
semantic domain [36].
The semantic domain is usually modelled by a domain

model [6], which can be an analysis model [21], a conceptual
model [65], a megamodel [93], or just a model in a domain-
modelling language like DSVL [79]. In this paper, we will
model the semantic domain using an ontology, which is of
the mature technologies portable across domains. Within
the context of model-based engineering, an ontology is a

representation of domain knowledge [73]. Generally speak-
ing, an ontology is denoted with (domain) concepts and the
relationships between these concepts [34]. Numerous papers
have been written about using an ontology for the develop-
ment of a DSL. To name a few, Lyadova et al described a
framework for developing DSLs by letting domain experts
develop an ontology upon which DSL developers will base
the language on [56]; Tairas et al constructed an ontology
for air traffic communication and proposed a subsequent
context-free grammar for the DSL design [82]; Utilin and
Babkin discussed the evolution of an ontology and its DSL
by adding new rules to the DSL which subsequently also
adds new concepts and relationships to the ontology [84].

Four different kinds of anomalies can occur whenmapping
an ontology to a construct (which in this paper is a DSL) [62]:

• Construct deficiency means there is no construct for an
ontological concept.

• Construct overload is when a single notation maps to
multiple ontological concepts.

• Construct redundancy is when multiple notations map
to the same concept.

• Construct excess is when a notation construct does not
map to an ontological construct.

In case there is a construct deficiency, then the DSL is
said to be ontologically incomplete. If any of the three other
cases occur, then the DSL is ontologically unclear [62]. The
goal of a good DSL is to have a one-to-one mapping from
ontological concepts to the language vocabulary.
There are different kinds of formal notations to describe

ontologies. For example, the OntologyWeb Language (OWL)
is a formal ontology forwhich Pereira et al createdOWL2DSL,
an OWL to DSL converter [67]. However, OWL is mostly
used in the context of the SemanticWeb. Bunge-Wand-Weber
(BWW) is a different kind of formal notation for an ontology
and is one of the leading ontology frameworks used [62, 86].
The proposed ontology in this paper uses the following

concepts of the BWW ontology to describe CPS: Thing (an el-
ementary unit), Property (an attribute belonging to a Thing),
State (the values of all attributes of a Thing), Event (a change
in State), History (all Events of a Thing), Coupling (whether
the History of two Things are independent or not), System
(Things which are connected to each other and have depen-
dent Histories), Composition (all Things inside a System),
Environment (all Things outside a System that interact with
Things inside the System), Structure (the Coupling among
the components of the Systems and the Environment), Sub-
system (a System whose Composition and Structure are a
subset of another System), Input (a Thing in a System acted
upon by an Environmental Thing), and Output (a Thing in a
System acting on an Environmental Thing) [29, 86].

While shaping the ontology, we refine our understanding
of a CPS specification from a selection of available definitions
from prior literature and a set of generic guidelines, into a
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more concrete definition. We have quite some Things from
the physical world, such as sensors and actuators which are
connected to some network and send data in some format
towards either edge devices or remote computers. There are
also many concepts from the cyber part, like an algorithm
that is being used to process the data, usually by performing
tasks or operations, which need to be properly scheduled
to be completed as well. Previous researchers commented
that there should be an unambiguous division between the
physical and cyber parts of the system [63], but the mutual
influence is undeniable.
This leads us to one of our main contributions of this

paper, the following ontology, also visualised on Figure 1:

• Sensor represents a physical sensor that takes mea-
surements of some part of the physical world;

• Process represents a continuous process which influ-
ences the sensor (e.g., temperature changes);

• Actuator represents a physical actuator that can be
used to exert influence on the physical world;

• Protocol represents a discrete protocol which is used
to communicate to the actuator;

• Network represents a carrier of information among
other CPS entities; it is a CPS by itself and can be
viewed as a stack of its own protocols [39] or at least as
a stateful connection enabling the contact with Sensors
and Actuators;

• Format represents essentially the metamodel of the
data produced by a sensor or consumed by an actuator;

Sensor Actuator

Process Protocol

Network

Edge

Computer

FormatAlgorithm

Operation

Trigger

Guard

Schedule

Agent

Figure 1. A graphical view of a CPS ontology. Nodes rep-
resent BWW [86] Things (in regular font) and Events (in
italics), solid lines show Couplings, dotted gray lines denote
other associations. Black labelled nodes are a part of the
System, blue nodes may or may not be considered to be a
part of the System (depending on whether the focus is on
embedded systems or on pervasive computing), red nodes
are traditionally viewed as a part of the Environment.

• Edge represents an edge device that receives informa-
tion from sensors and issues commands to actuators,
while being operated by some agent;

• Computer represents a remote device accessible “in
the cloud” through a network connection and used to
carry on computations;

• Algorithm represents the purely cyber entity that
models a computation;

• Operation is an Event representing one task or part
of an algorithm that can be carried out separately;

• Schedule represents some management of operations
in time on available hardware;

• Trigger represents an operation that enables and ini-
tiates another operation;

• Guard represents an operation that prevents execu-
tion of another operation until a certain condition is
met;

• Agent represents an out-of-system entity that oper-
ates the system or interacts with it in some other way,
up to and including communicating with Sensors and
Actuators.

One can notice that we have followed our own advice
from two sections ago: interoperability (§ 2.1) is guaranteed
by making the Protocol and the Format explicit; the flow of
operation (§ 2.2) is guided by Guards and Triggers in addition
to normal Operations; the timing semantics (§ 2.3) resides in
the Schedule; and the hybrid nature (§ 2.4) of the CPS comes
to life with the distinction between a Process and a Protocol.

3.1 Takeaways for RQ2
Figure 1 is our answer to model the domain of CPS. Armed
with this ontology, we can still make very different decisions
about the constructs we want to have prominent in the DSL
(collectively known as an “abstract syntax”), and even with
more diversity make decisions about the way we want to
write these things down textually or graphically (similarly
known as the “concrete syntax”), but all those decisions can
be guided or at least informed by this ontology as means
of checking compatibility and conformance to the chosen
domain. The BWW-based ontology we have presented here,
can be compared to existing ontological frameworks for CPS
such as those based on description logics [68] and also further
refined and formalised inside frameworks like UFO [3] and
thus engage in validation activities before the syntax of the
language has crystallised.

4 Design Phase (RQ3)
Before designing a DSL, it is important to understand its
application in the domain. A well-designed DSL capable
of expressing diverse and heterogeneous CPS in a reliable,
valid and diagnosable way, should exist within some model-
driven framework, where the system’s behaviour and health
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is inferred by its compositional model in comparison with ob-
served inputs and outputs [70]. Specifically, a DSL is used to
model the system and transform it into the primary language
of the application, which is then used for further develop-
ment of diagnostic algorithms.
Feature-wise, based on the DSL’s purpose and existing

approaches to model-based design, the language can poten-
tially support the following features:
(1) Detection of faults and their root causes [10, 12, 70].
(2) Choosing CPS sensors [9, 10].
(3) Evaluating diagnosis accuracy [9, 10, 12].
(4) Evaluating diagnosis costs [70].
(5) Model extraction from existing data [10].
(6) Model visualisation [9, 12].
However, the exact features would depend on the specific

requirements of CPS stakeholders. Depending on the chosen
feature set, the design can significantly vary. For instance,
determining the root causes of CPS faults would require
the mappings between anomalies and fault indicators to be
embedded in the DSL design.
To determine the principles behind the DSL design, it is

necessary to understand its intentions [91]. In the context of
CPS diagnostics, the DSLs are expected to improve produc-
tivity during the development, maintenance, and utilisation
of diagnostic software by facilitating error detection, system
modification, and program understanding [26, 60]. The lat-
ter is especially important as code comprehension can be
time-consuming and may require more than half of the time
allocated for software maintenance [89]. Another principal
intention behind DSLs is to enhance interaction with do-
main specialists, as they are not always familiar with GPL
concepts such as algorithms and data structures [26]. Taking
this into account, we recall the following design principles
based on the existing work of Fowler and Parsons [26], Her-
mans et al [37], Karsai et al [41], Zaytsev [91], Wąsowski
and Berger [87]:
(1) Use concise and simple syntax to facilitate communi-

cation with stakeholders.
(2) Use domain-specific terminology in the syntax and

the semantic model to improve understandability for
domain experts.

(3) Use common conventions familiar to everyday coding
practices.

(4) Avoid ambiguity in definitions and reasoning.
(5) Avoid resembling a natural language, as this introduces

syntactic sugar that obscures the semantics.
(6) Separate the DSL’s semantic model and syntax, allow-

ing their independent evolution.
(7) Implement automatic migration among DSL versions.
(8) Implement testing of the DSL’s parser, scripts, and the

semantic model.
Let us zoom in on one more principle which is impor-

tant for DSL design and crucial for CPS: choosing the right

computational model. This model determines the framework
used to describe the computational processes and define the
language semantics [26]. Most popular GPLs, such as Java,
Python, and C++, utilise an imperative approach where the
program consists of statements executed step by step [77].
They provide selection statements, iterative statements, per-
haps support for object-oriented programming, and other
constructs [77]. For many domains, this approach is known
to be badly suitable and unnecessarily complex for domain
experts, which is why many DSLs explore alternative com-
putation models like a decision table, a state machine, or a
production rule system, instead [26].

Imagine a thermostat system, one of the simplest possible
cyber-physical systems. Within this system, the diagnosis is
based on conditions such as temperature readings (T), sensor
status (S), and error codes (E). Also, the system adheres to
the following rules consecutively:

• If 𝐸 = 1, then the output is “system failure”.
• If 𝑆 ≠ OK, then the output is “sensor failure”.
• If 𝑇 > 30, then the output is “high temperature”.
• Otherwise the system functions normally.

If we translate this into a decision table, it will look similar
to the following:

1 T>30 ; S=OK ; E=0 ; D=high_temperature

2 T=_ ; S!=OK ; E=0 ; D=sensor_failure

3 T=_ ; S=_ ; E=1 ; D=system_failure

As can be observed, this approach is efficient in combin-
ing the outputs of multiple interacting conditions. It is also
well understood by both software engineers and domain
experts [26]. This model can be used to define the correct
system behaviour in diagnostics as a set of conditions leading
to either fault/non-fault states or the probabilities of failures.
An example of this model’s usage can be found in thework by
Barbini et al [9], which introduces a model-based approach
for computing the system’s diagnosability by generating
Bayesian networks. However, the drawback of this model
is that defining input conditions can be time-consuming,
especially for complex systems [26].

Another alternative is translating the thermostat example
to a state machine, which defines the system as a set of states
and transitions between them, as shown below.

1 normal -> sensor_failure

2 when E = 0 and S != OK

3 normal -> high_temperature

4 when E = 0 and S = OK and T > 30

5 normal -> system_error

6 when E = 1

This approach can be used to describe CPS diagnostics
with “normal” states and transitions that lead to “faulty”
states. Its application can be found in DSLs such as SHIFT [4],
which focuses on describing complex systems, and Facile [76],
which is used for micro-architecture simulations.

The last alternative is the production rule system. It is
similar to the decision table, but the difference is that it
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focuses on the behaviour of individual rules rather than the
whole table [26].

1 E = 1 => D = system_failure

2 S != OK => D = sensor_failure

3 T > 30 => D = high_temperature

This model is more compact than the decision table, but
engineers should also consider how rules interact with each
other.

Besides these three, other computational models also exist,
and can also turn out to be suitable for the domain of CPS
diagnostics. For example, Petri Nets [27] are known to be suit-
able for the description and analysis of systems characterised
by concurrency, synchronisation, and resource sharing; or
fault trees [74] for representing and analysing the causes
of system failures through a visually representable hierar-
chical decomposition. Formal temporal logics (recall § 2.3)
such as LTL have also been reported to be effective when
used together with powerful system modelling languages
like SysML [54].

4.1 Takeaways for RQ3
There are many principles and good practices in DSL design,
and most of them can be made applicable to DSLs for CPS.
When assigning priority to them, one should remember the
results we collected for previous phases: for instance, the
ontology from Figure 1 can help to stick to the expected
terminology, and the main aspects of § 2 can guide the de-
signers in choosing the right underlying computation model
— which, as we have demonstrated, can have tremendous
immediate effect on the overall design of a DSL.

5 Related Work
In an industrial context, Gray and Karsai [31] provide an
overview of three DSLs, focusing on tool integration through
model transformations, and quantitative analysis of DSLs
with their generated code in C++.

We also build on the methodologies and patterns of ex-
isting DSLs. For instance, Hawk [49] is a DSL embedded
in Haskell, using a functional approach to define and verify
micro-architectures. Verilog [5] is used for designing and ver-
ifying digital circuits at the register transfer level, for which
there are also extensions of improved flexibility and main-
tainability like Verischemelog [40]. Facile [76] specifies mi-
croarchitecture simulators using fast-forwarding techniques.
SHIFT [4] uses state-based descriptions to model complex
systems such as automated highways and air traffic control.
UPPAAL [11] represents real-time systems as networks of
timed automata. mCRL2 [32] is used for modelling, valida-
tion, and verification of concurrent systems. Overall, these
DSLs demonstrate a range of approaches and techniques,
providing insights into design patterns for various domains.

Understanding the domain of the DSL is crucial to its de-
sign. In the context of CPS diagnostics, this involves the con-
cept of MBD. Within this area, Chandola et al [19] provide
different mathematical techniques for anomaly detection.
Pietersma et al [70] illustrate a model-based approach for de-
riving test sequences for fault diagnosis using the modelling
DSL called Lydia. Barbini et al [9] demonstrate an application
of the MBD methodology to compute system diagnosabil-
ity and identify hypothetical sensors needed to find root
causes of system anomalies. Kurien and R-Moreno [48] as
well as Pietersma and van Gemund [69] analyse the costs and
benefits of the MBD approach. Munirathinam and Balakrish-
nan [64] also consider an alternative to the MBD approach
in the form of Data-Driven Diagnostics (DDD), proposing
machine learning techniques for predicting equipment faults
in the semiconductor manufacturing process.

CPS are systems that integrate software, networking, com-
putation, and physical operations [12]. This requires an ap-
proach known as system-of-systems (SoS), where physical
processes are observed and managed by multiple embedded
systems and networks. As a result, CPS models expand con-
ventional embedded system models with additional support
for network connectivity, temporal alignment (concurrency),
and seamless integration between components (interoper-
ability). Furthermore, if CPS consist of systems requiring
different model specifications, then their formalisation can
utilise the megamodeling approach [92]. Megamodels are
models that combine other models and transformations be-
tween them and can be used as abstract languages for model
operations [7, 13]. Overall, when language engineers de-
scribe CPS using a model-based approach, they need to con-
sider aspects such as networking, concurrency, interoper-
ability, and megamodeling.
Beyond DSLs, timed automata are a formalism to mod-

elling time in applications. Timed automata are finite-state
machines extended with clock variables which allows one
to capture quantitative continuoustime properties [18] that
arise in CPS. UPPAAL [11] specifically is a language that
implements the timed automata formalism and it models a
system as a network of timed automata in parallel. It also
makes it possible to specify discrete variables as in a regular
programming language, and the values of these variables
can be used to define the state of the system.
There are other helpful resources to keep in mind when

designing a DSL for CPS. Broman et al [17] give an overview
of the challenges and other existing approaches in regards
to time in CPS. Shrivastava et al [78] explain timing-related
challenges in CPS development and give insights as to the
limitations of current approaches. Baillieul and Antsaklis [8]
describe issues involved in designing successful networked
real-time systems. Sanfelice [75] gives a hybrid systems ap-
proach to the analysis and design of CPS. Modelling a CPS
using a DSL is not the only approach. Graja et al [30] give an
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overview on various modelling techniques of CPS. Many dif-
ferent architectures for CPS also exist, depending on system
requirements and application details [1]. Some examples are
given by Yu et al [90] and Ahmed et al [2].

6 Conclusion
In conclusion, the development of Domain-Specific Lan-
guages for reliable and diagnosable Cyber-Physical Systems
presents a challenge with many aspects. Addressing it re-
quires careful consideration of domain-specific requirements,
computational models, as well as stakeholder needs, which
we plan to do in the scope of a larger project with five indus-
trial partners. The design of such DSLsmust balance between
providing expressive power for capturing intricate system
behaviours and maintaining simplicity for domain experts to
effectively utilise their knowledge and interpret the models
written in the DSL. Key features such as interoperability,
flow of operation, timing semantics, and hybrid system mod-
elling are critical in ensuring that DSLs accurately represent
CPS complexities while facilitating efficient diagnostics and
system analysis.
In this paper we have traversed some existing literature

on the topic, which, albeit not exhaustive, provided us with a
number of concrete insights which informed the next steps.
We have also proposed a conceptual model of this domain in
a form of Bunge-Wand-Weber-based ontology, and explored
various computational models including decision tables, state
machines, and production rule systems, each offering distinct
advantages in modelling CPS diagnostics. Decision tables
excel in combining multiple conditions into clear diagnostic
outputs, state machines provide visual clarity on system
states and transitions, while production rule systems offer
concise rule-based logic closer to the rules domain experts
use in their daily lives. The choice of computational model
should align with the specific diagnostic requirements and
the expertise of stakeholders involved.

Leveraging formal ontologies such as Bunge-Wand-Weber
provided us with a structured approach to defining CPS com-
ponents and their relationships, ensuring consistency and
clarity in future DSL design. We believe that this ontology-
driven approach facilitates validation and refinement of DSLs
before their implementation, enhancing their utility in real-
world CPS applications.

Overall, the upcoming design and implementation (as the
next two phases) of DSLs for CPS diagnostics will require
a systematic approach that integrates domain knowledge,
computational modelling techniques, and validation method-
ologies. By addressing these aspects comprehensively, DSLs
can effectively support the development, deployment, main-
tenance, operation and optimisation of CPS systems, ulti-
mately enhancing their reliability, performance and safety
in diverse application domains.
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