
Reflections on the Lack of Adoption of
Domain Specific Languages?

Federico Tomassetti1 and Vadim Zaytsev2,3

1 federico@tomassetti.me, https://tomassetti.me
Strumenta, Torino, Italy

2 vadim@grammarware.net, http://grammarware.net
Raincode Labs, Brussels, Belgium

3 Universiteit Twente, Enschede, The Netherlands

Abstract. Given all the different benefits that domain specific lan-
guages are reported to produce, why are they not a widely adopted
practice? The essence of the question has roots in industrial experience of
the two authors of this report, but it was put out as a discussion starter
at OOPSLE 2020. During the discussion session itself, there were some
possible reasons voiced and possibly related concerns expressed. In this
report, we try to condense those in a short coherent text. Not claiming
any generality and fully acknowledging the anecdotal nature of our ev-
idence, we still think that such a conversation is useful to have within
the SLE community.

1 Introduction

While this paper reflects the opinions of the authors, it has been strongly influ-
enced by the helpful discussions at OOPSLE over the business and organisational
problems causing domain specific languages (DSLs) not to be adopted. By the
lack (or perhaps just dearth) of adoption here we mean that whenever software
developers have a problem to solve, among the possible solutions to it, mod-
elling the problem domain by means of creating a new domain-specific language
or adopting an existing one, is rarely, if ever, the first option. Quite often it is
being left out of this list altogether.

2 Advantages of DSLs

From research and practice, domain-specific languages are known to bring the
following advantages:

– domain-specific abstractions [3, 7, 14, 17] to express commonly needed
concepts even by non-developers, beyond what a library would allow [13];

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

https://tomassetti.me
http://grammarware.net


2 Federico Tomassetti and Vadim Zaytsev

– domain-specific notations [3, 7, 16, 17] that help expressing needed con-
cepts in a readable and maintainable way, and the flexibility to change and
adjust those notations as an inherent part of growing the language [14];

– separation of concerns stemming from the language focus: in a language
that can only do one thing well, one is forced to write disjoint programs or
models even for strongly coupled entities;

– tool support for type checking, editing [14], evolution [17] analysis, ver-
ification, optimisation, transformation [7], simulation and animation [18],
derivation of dependent artefacts [15] (even though some sources explic-
itly complain that tool support for DSLs is noticeably worse than that for
GPLs [3]);

– conciseness [3, 18] and self-documentation [2], to express the domain
concepts in a concise manner that would make the resulting program or
model intuitively understandable by domain experts;

– productivity [2, 3, 15] and maintainability [2] boosts, allowing domain
experts to manipulate constructs expressed in a DSL, in a quick and natural
way, drastically reducing maintenance costs;

– reliability, testability, portability and safety [2, 15] allegations based
on making the language fit the chosen platform(s) and using its behavioural
patterns in testing and verification to make sure it runs smoothly;

– conservation and reuse of domain knowledge [2, 14] without leaky
abstractions [13] (during the OOPSLE discussion the main author of the
latter cited paper even claimed that “understanding the domain is the most
important side effect of building a DSL”);

– executability, liveness and enabling debugging and experimentation with
a system that models the domain in a highly interactive way [14];

– involvement and integration of domain experts beyond experienced pro-
grammers, into the development process [3, 14, 17], and their collabora-
tion [17];

– the lifespan of a DSL is that of months or years [13] while general purpose
languages live through decades notwithstanding their actual worth after such
a deployment period, simply based on inertia of accumulated legacy.

Given the obvious enthusiasm about the potential of domain-specific lan-
guages within the (OOP)SLE community, it is discomforting to notice how low
the adoption rate of DSLs appears to be, even in contexts which, according to
the experience industries have with DSLs, would be a good fit for their adop-
tion. In the remainder of the paper we try to summarise possible reasons without
overselling DSLs as the silver bullet.

3 Adoption Problems of DSLs

During the discussion two main problems emerged, which seem to negatively
affect DSL adoption:

1. Many software engineering professionals are unaware or oblivious of DSLs.



Reflections on the Lack of Adoption of Domain Specific Languages 3

2. Many SE professionals who are aware of DSLs, perceive them as risky.

In the remainder of this section we discuss these specific evident symptoms
of the problem. We will not be discussing the cause for these symptoms, nor
trying to find other problems to make the list exhaustive.

3.1 Lack of Awareness for DSLs

As practitioners, we seem to agree that only a tiny minority of software devel-
opment professionals are aware of DSLs. An anecdote we can report, is based on
our experience working with a client on the development of a DSL. Before con-
tacting us, an organisation had invested some effort internally to raise the level
of abstraction in their software development process. They had the intuition it
was possible to do so, in their context. However, the strategy to reach that goal,
remained unclear until they were faced with the definition of the term “Domain
Specific Language” and the implications around it. That term was encountered
by them for the first time only after investing two years on this internal project.

While many practitioners have a total lack of awareness about DSLs, others
have severe misconceptions about them. Often practitioners associate things
unrelated to DSLs, to the misunderstood term. In other cases they are aware of
only a certain kind of DSL, for example internal or embedded DSLs [10]. They
assume those are the only possible type of DSLs and draw conclusions based on
that. “Look closely enough, and HTML and emojis become DSLs too” [1].

It appears obvious that DSLs cannot be more widely adopted, until more
software development professionals get a better understanding of them, or until
the DSL community adopts a different terminology which is less alienating for
developers.

3.2 Perceived DSL Risks

When there is a proper understanding of DSLs within an organisation, and they
are aware of the benefits DSLs could bring to their specific situation, there is a
set of perceived risks which could dissuade them from adopting DSLs.

In this section we are not making any statement about the validity of these
risks, but only trying to identify risks as they appear to be perceived by potential
adopters:

1. Lack of competence. Adopting DSLs is seen as risky because most com-
panies simply do not have internal resources with the skills needed to design,
implement, and maintain advanced DSL-based solutions. Such competence
seems difficult to acquire on the market or to develop internally.

2. Lack of established vendors. It is perceived to be difficult to identify
vendors providing language engineering services. In particular large organ-
isations see the risk in the absence of large vendors capable of providing
sufficient support for software language engineering projects. The majority



4 Federico Tomassetti and Vadim Zaytsev

of providers of language engineering services are single freelancers or micro-
consultancies. Raincode Labs is known to be the largest in the world with
only around 50 compiler experts [9]. Working with vendors with single-digit
number of employees poses a risk, because those vendors could not rapidly
scale the support offered, and they do not offer sufficient guarantees for the
long term.

3. Lack of adoption. It looks like a vicious circle, but DSLs are perceived
as risky because they are not a mainstream technology. This poses a threat
regarding future support of technologies related to DSLs. It also makes man-
agement more cautious in adopting a solution which is not common, as po-
tential failures could be connected to the “unusual” choice of adopting DSLs.
While “no one gets fired for buying IBM” [6], if a DSL-project proves un-
successful, someone most probably will be. Mainstream general purpose lan-
guages typically enjoy a rich ecosystem with an arsenal of well-maintained
tools and other forms of support, and even their discontinuation is well-
announced and slow. Identifying and studying domain-specific ecosystems is
a well-known challenge [11], but it is not uncommon for an ecosystem of a
particular DSL to be confined to one company.

4. Fear of lock-in. An organisation could perceive the DSL route as risky,
because of the lock-in on the developed languages, their supporting toolsets
and/or the platform on which they rely. For example, a company which de-
velops a DSL for the definition of digital therapeutics applications using Jet-
Brains MPS [4] could later be locked-in in using the developed language(s),
because of the complexity to switch to other technologies. Even if the com-
pany wanted to keep using the DSL, they may want to migrate to other
platforms or language workbenches, but that could prove too difficult, in
turn effectively locking them in the specific workbench and platform origi-
nally chosen (JetBrains MPS, in this example).

5. Bad prior experience. Organisations which are open to adopting non-
mainstream solutions, may have adopted other technologies claiming some
of the benefits claimed today by DSLs: 4GLs, RAD, etc. Because of this, they
could attribute some of the already experienced drawbacks of those solutions
to DSLs, perceiving DSLs as bringing the same risks as those previously tried
solutions.

Most of these risks are far from being unfounded. It is indeed hard to become
an accomplished expert in compiler services and software language engineering—
even though only a very small team of such people is needed for any project or an
organisation. It is indeed a big liability that DSLs can be abandoned simply be-
cause the one person making maintenance promises, decides to retract them and
move on. It is indeed true that DSLs are not a universal solution to all the prob-
lems, and thus remain somewhat niche. We see the latter two as the most weakly
supported by facts: while there is a lock-in chance, a well-designed DSL raises
the level of abstraction enough to be separated from the technical implementa-
tion details, which means redeveloping an alternative toolset is just a matter of
resources. (An example was given of TIALAA, short for “There Is A Life After



Reflections on the Lack of Adoption of Domain Specific Languages 5

AppBuilder” [20,21], a project where even in the worst possible circumstances—
for a badly designed 4GL which documentation was inaccessible—it was possible
for a very small team to develop a full replacement compiler and debugger from
scratch). The last item remains a topic of a larger discussion, which has no place
here among DSL experts and fans, since all OOPSLE participants will obviously
claim that DSLs are sufficiently different from solutions that preceded them.

4 The Term and Its Refinement

Since the term “Domain-Specific Languages” is problematic and overly general,
there can be two paths to solve this problem: either refining it or abandoning
it. Refinement will imply further classification around several dimensions, in
order to clearly position each particular proposed solution within the overly
large solution space, and to facilitate separate discussions around each of the
dimensions, instead of wallowing in misconceptions. Examples of dimensions
can be:

– Internal/Embedded/External. Internal DSLs are defined within the host
language (e.g., Haskell’s combinator libraries, jQuery and similar libraries for
JavaScript, XML I/O in most languages). Embedded DSLs are defined nat-
urally within an environment that was meant for significant extension (e.g.,
language workbenches, languages with powerful quoting like MetaOCaml,
extensible compilers). External DSLs have foreign syntax and require specif-
ically developed tooling (e.g., embedded SQL in COBOL and 4GLs, LINQ in
C#, XPath and PCRE in all languages that support them). This particular
definition of this dimension is heavily inspired by Renggli’s work [10].

– Horizontal/Vertical. Horizontal DSLs, or languages specific to a horizon-
tal domain, are those that are related to a specific type of activity that can
be performed in any market sector (e.g., defining documents, modelling in-
teractions, querying datasets). Vertical DSLs, sometimes also referred to as
business DSLs, are languages specific to a certain market sector (e.g., in-
surance contracts, embedded systems, dance moves). This definitions was
considered very early on, already by Kleppe [5].

– Target Audience. Some DSLs are intended to be powerful tools for pro-
grammers to do more with less code (if APL can be seen as a DSL for array
processing, it will be this; any dialect of EBNF is also a perfect example: it al-
lows a fully trained expert to fit a language definition on a page). Some other
DSLs are specifically targeting domain experts without any background in
computer science (many spreadsheets; languages made from established no-
tations like the musical notation).

– Ecosystem. Anyone having trouble in Python, can post a question on the
Data Science Stack Exchange website. Anyone debugging or optimising a
SQL query, can post a question on the Database Administrators Stack Ex-
change website. Either of those get 25 questions a day, most of which are
answered [12]. For some of the less known DSLs, the rate of questions is

https://datascience.stackexchange.com/
https://dba.stackexchange.com/
https://dba.stackexchange.com/


6 Federico Tomassetti and Vadim Zaytsev

lower, and they remain unanswered longer. Some do not even have any fo-
rum nor discussion board to go to. For the most obscure ones, even plain
web search does not return any hits. A similar spectrum can be formulated
for community size, tool support, compiler maintenance activities, etc—all
the things that general purpose language users take for granted, are in high
demand yet scarce availability for DSLs.

Examples of statements made aware of such dimensions:

– HTML is an external DSL, targeting developers, for a horizontal domain
of hypertext markup. Building such a DSL and the corresponding tooling
is an effort which requires significantly resources and it is intended to be
fore-taken by the industry as a whole.

– Simple internal DSLs can be developed within a few hours, with the intent
of making code more readable. They require minimal investment. They are
intended mostly for developers, and in the majority of cases the management
will not even be aware of their existence inside the organisation.

– Vertical external DSLs directed to non-developers, can be transformative for
an organisation. They require the deployment of a significant effort and need
the support of the whole organisation or a large unit, such as a department.
They are typically multi-year projects with far reaching consequences in
term of productivity. They require adequate planning as they need to be
supported on the long term. This particular kind of DSLs are probably the
least well-known by a broader audience. A relevant example of this particular
kind of DSL is described by Völter et al [15].

If we consider these examples, we can see that they solve very different prob-
lems, they are intended to be used in different contexts, they require different
resources to be implemented, they bring different risks with them, and they pro-
vide different benefits. In other words, it is hard to see them as an homogeneous
category, from the point of view of the potential adopters. Some are expensive,
some are not, some can be built in an afternoon, others take years, some need to
be maintained for decades, others don’t, for some it is easy to find competencies,
for other is extremely difficult. As consequence hardly anything which can be
stated for one sub-category of DSLs, can be extended to the whole category of
DSLs. This could have contributed to the emerging of a very confused under-
standing of DSLs among many practitioners, and this could have in turn limited
the diffusion as the idea, as it is blurred and confused.

In other words, the category “Domain-Specific Languages” seem too abstract
for practitioners, while being perfectly useful for researchers. We could draw a
similarity with other broad categories such as “means of transportation”. While
this term could be useful when discussing logistics or studying transportation,
this would not be a term that many users would consider when looking for
a solution to their problems, as it encompasses very different things such as
bicycles, trains, tanks and aeroplanes, which are used in very different contexts
to solve very different problems.



Reflections on the Lack of Adoption of Domain Specific Languages 7

Hence, instead of refining it, we can try to completely abandon the term
“DSL”, and leave it behind. Alternatives to consider, are:

– Fluent Interfaces =⇒ Internal DSLs, APIs, library packages: they are
characterised by requiring a very limited effort, introducing limited risks,
and provide a limited value when compared to external DSLs, because of the
lack of all advantages provided by tooling. While the developers of such DSLs
themselves enjoy some comfortable IDEs, not all that confort and support is
propagated well to the DSLs they create. Take diagrams [19] as an example:
it is a popular Haskell package for creating vector graphics, and is being
advertised as a DSL. Does it profit from the host language’s strong type
system? Absolutely! Does it have support for drag-and-drop functionality or
for drawing tablet input? Absolutely not!

– Technical Languages =⇒ External DSLs for developers, often horizontal.
These DSLs can have a very significant impact on the industry and typi-
cally their creation and development is fore-taken by several large partners.
Examples of Technical Languages are SQL, HTML, and CSS.

– Knowledge Systems =⇒ External executable DSLs for non-developers,
often vertical. This type of DSLs are typically developed by a single organi-
sation or a consortium of organisations operating in the same vertical space.
They require significant investments, and given they are intended for a spe-
cific vertical space, only a reduced number of users can benefit from them.
Therefore the investment requested to each adopting organisation is signifi-
cant. A key factor of this kind of DSLs is the creation of customised tooling:
besides editors, interpreters, simulators, diagram generators, and other com-
ponents are frequently developed and integrated in a comprehensive solution.
This is the kind of DSLs least widely known: unlike other kinds, such DSLs
are not typically shared outside the organisation which financed them. An
example of such kind of DSL is the DSL created by the Dutch Tax and
Customs Administration for the definition of tax calculations [8].

In Table 1 we present the relation between the DSL dimensions we discussed
in section 4 and the DSL types we introduced here.

As an example of how DSL types can also be useful, consider the discussion
on how risks affect the adoption of a DSL. Different types of DSLs that we have
identified, are impacted very differently by the risks perceived:

– In the case of Fluent Interfaces the risks involved are limited, as the
investments necessary, and the benefits provided.

– In the case of Technical Languages, these languages are typically tackled
as large, industry-wide efforts. While the resources necessary to tackle such
projects are very large, the effort is typically spread across multiple actors.
The actors typically involved in these initiatives have the resources needed
to counteract the risks involved.

– In the case of Knowledge Systems, the risks faced are more significant
because the level of investment needed is high, and the number of adopters to



8 Federico Tomassetti and Vadim Zaytsev

Internal (I)/ Horizontal (H)/ Developers (D)/ DSL Type
External (E) Vertical (V) Anyone (A)

I H D Fluent Interface

I H A Fluent Interface

I V D Fluent Interface

I V A Fluent Interface

E H D Technical Language

E H A Knowledge System

E V D Technical Language

E V A Knowledge System

Table 1. Relation between DSL dimensions and DSL Types (less common forms in
italics)

share such risks is low. In addition to this, there is a problem specific to this
kind of DSLs, and this the lack of examples which are publicly accessible.
We believe that the community should concentrate its effort in mitigating
the risks for this type of DSLs. More specifically:
• Lack of competence could be reduced by an effort in education. Un-

der the umbrella of SLEBoK [22] a list of university courses teaching
DSLs has been created. This could help fostering collaborations among
teachers and possibly facilitate the creation of more courses on DSLs;

• Lack of established vendors is a real problem, to which there is not
an immediate answer. Larger vendors would hopefully emerge as the
adoption of DSLs is increased;

• Lack of adoption, is unfortunately a self-fulfilling prophecy;
• Fear of lock-in is a risk which can be reduced by working on interoper-

ability and the adoption of common standards, or at least the definition
of tools to translate among the most common formats;

• Bad prior experience could be counteracted by proper communication
of the differences between DSLs and other similar technologies. Efforts
to clarify how DSLs are presented are necessary, and in this paper we
present some ideas to move in that direction.

5 Conclusion

Speaking pessimistically, we can say that as a community of language designers,
we are failing to communicate all the possibilities and benefits that DSLs and
the discipline of their engineering, can offer to practitioners. DSLs remain niche
solutions to problems experienced by people who are both already aware of them
and unafraid to venture towards them. In particular, metaprogrammers seem to
be a good target audience for selling DSLs to.

In this paper, we tried to summarise the essence of the discussion that was
taking place during OOPSLE 2020, the workshop on Open and Original Prob-
lems in Software Language Engineering. To substantiate some of the statements



Reflections on the Lack of Adoption of Domain Specific Languages 9

and to facilitate consumption of this text by external readers, we added some
technical content, especially relating to the advantages of DSLs, that we col-
lected in section 2 from available literature; the two adoption problems of DSLs,
including a list of perceived risks of using them, in section 3; possible ways of
improving the terminology by either refining or replacing the very term “DSLs”,
in section 4. Our hope is that claims made here, can later be validated exper-
imentally, and proper corrections could be put in place by the community to
improve the level of adoption of language engineering techniques in the broader
field of software engineering.

Acknowledgement

We would like to thank all the participants of the discussion which was held
as part of OOPSLE 2020. In particular, active participation in the discussion
was noticed and appreciated from: Jurriaan Hage, Markus Völter, Ralf Lämmel,
Friedrich Steimann, and Mathieu Acher. We are also grateful to the organisers
and other attendees of the OOPSLE workshop.

References

1. Blasband, D.: The DSL Misunderstanding. https://www.linkedin.com/pulse/

dsl-misunderstanding-darius-blasband/ (Jul 2017)
2. van Deursen, A., Klint, P., Visser, J.: Domain-specific Languages: An

Annotated Bibliography. SIGPLAN Notices 35(6), 26–36 (Jun 2000).
https://doi.org/10.1145/352029.352035

3. Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., Tolvanen, J.P.:
DSLs: The Good, the Bad, and the Ugly. In: Companion to the 23rd
ACM SIGPLAN Conference on Object-Oriented Programming Systems Lan-
guages and Applications. p. 791–794. OOPSLA Companion ’08, ACM (2008).
https://doi.org/10.1145/1449814.1449863

4. JetBrains: MPS: Meta Programming System. https://www.jetbrains.com/mps

(2009)
5. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages

Using Metamodels. Addison-Wesley Professional (2008)
6. Lynch, P., Rothchild, J.: Beating the Street. Simon & Schuster (1994)
7. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop

Domain-Specific Languages. ACM Computing Surveys 37(4), 316–344 (2005).
https://doi.org/10.1145/1118890.1118892

8. MPS: Client: Dutch Tax and Customs Administration (DTCA). Tech. rep.,
JetBrains (2014), https://resources.jetbrains.com/storage/products/mps/

docs/MPS_DTO_Case_Study.pdf

9. Raincode Labs. https://www.raincodelabs.com
10. Renggli, L.: Dynamic Language Embedding With Homogeneous Tool Support.

Ph.D. thesis, Universität Bern (2010)
11. Serebrenik, A., Mens, T.: Challenges in software ecosystems research. In: Proceed-

ings of the 2015 European Conference on Software Architecture Workshops. pp. 1–6
(2015). https://doi.org/10.1145/2797433.2797475

https://www.linkedin.com/pulse/dsl-misunderstanding-darius-blasband/
https://www.linkedin.com/pulse/dsl-misunderstanding-darius-blasband/
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/1449814.1449863
https://www.jetbrains.com/mps
https://doi.org/10.1145/1118890.1118892
https://resources.jetbrains.com/storage/products/mps/docs/MPS_DTO_Case_Study.pdf
https://resources.jetbrains.com/storage/products/mps/docs/MPS_DTO_Case_Study.pdf
https://www.raincodelabs.com
https://doi.org/10.1145/2797433.2797475


10 Federico Tomassetti and Vadim Zaytsev

12. StackExchange: All Sites. https://stackexchange.com/sites?view=list (2020)
13. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,

Visser, E., Wachsmuth, G.: DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. dslbook.org (2013)

14. Völter, M.: Fusing Modeling and Programming into Language-Oriented Program-
ming — Our Experiences with MPS. In: Margaria, T., Steffen, B. (eds.) Proceed-
ings of the Eighth International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), Part I. Lecture Notes in Computer
Science, vol. 11244, pp. 309–339. Springer (2018). https://doi.org/10.1007/978-3-
030-03418-4 19

15. Völter, M., Kolb, B., Birken, K., Tomassetti, F., Alff, P., Wiart, L., Wortmann,
A., Nordmann, A.: Using Language Workbenches and Domain-Specific Languages
for Safety-Critical Software Development. Software and Systems Modeling 18(4),
2507–2530 (2019). https://doi.org/10.1007/s10270-018-0679-0

16. Völter, M., Visser, E.: Product Line Engineering Using Domain-Specific Languages.
In: Proceedings of the 15th International Software Product Line Conference. pp.
70–79. IEEE (2011). https://doi.org/10.1109/SPLC.2011.25

17. Wegeler, T., Gutzeit, F., Destailleur, A., Dock, B.: Evaluating the Benefits of Using
Domain-Specific Modeling Languages: An Experience Report. In: Proceedings of
the 2013 ACM Workshop on Domain-Specific Modeling (DSM). p. 7–12. ACM
(2013). https://doi.org/10.1145/2541928.2541930

18. Wile, D.S.: Supporting the DSL Spectrum. Journal of Computing and Information
Technology 9(4), 263–287 (2001). https://doi.org/10.2498/cit.2001.04.01

19. Yorgey, B.: diagrams. https://archives.haskell.org/projects.haskell.org/

diagrams/ (2015)
20. Zaytsev, V.: Parser Generation by Example for Legacy Pattern Languages. In:

Flatt, M., Erdweg, S. (eds.) Proceedings of the 16th International Conference on
Generative Programming: Concepts and Experience (GPCE). pp. 212–218. ACM
(2017). https://doi.org/10.1145/3136040.3136058

21. Zaytsev, V.: An Industrial Case Study in Compiler Testing. In: Pearce, D.J.,
Mayerhofer, T., Steimann, F. (eds.) Proceedings of the 11th International Con-
ference on Software Language Engineering (SLE). pp. 97–102. ACM (2018).
https://doi.org/10.1145/3276604.3276619

22. Zaytsev, V. (Ed.): Software Language Engineering Body of Knowledge. http://
slebok.github.io (2009–2020)

https://stackexchange.com/sites?view=list
http://dslbook.org/
https://doi.org/10.1007/978-3-030-03418-4_19
https://doi.org/10.1007/978-3-030-03418-4_19
https://doi.org/10.1007/s10270-018-0679-0
https://doi.org/10.1109/SPLC.2011.25
https://doi.org/10.1145/2541928.2541930
https://doi.org/10.2498/cit.2001.04.01
https://archives.haskell.org/projects.haskell.org/diagrams/
https://archives.haskell.org/projects.haskell.org/diagrams/
https://doi.org/10.1145/3136040.3136058
https://doi.org/10.1145/3276604.3276619
http://slebok.github.io
http://slebok.github.io

