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Abstract
Most modern software languages enjoy relatively free and
relaxed concrete syntax, with significant flexibility of format-
ting of the program/model/sheet text. Yet, in the dark legacy
corners of software engineering there are still languages
with a strict fixed column-based structure—the compromises
of times long gone, attempting to combine some human
readability with some ease of machine processing. In this
paper, we consider an industrial case study for retirement of
a legacy domain-specific language, completed under extreme
circumstances: absolute lack of documentation, varying line
structure, hierarchical blocks within one file, scalability de-
mands for millions of lines of code, performance demands
for manipulating tens of thousands multi-megabyte files, etc.
However, the regularity of the language allowed to infer its
structure from the available examples, automatically, and
produce highly efficient parsers for it.
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1 Problem
When working in legacy analysis and renovation industry,
we come across bizarre file formats with alarming regularity.
It is a world where language identification cannot rely on
file extensions and may require anything up to and includ-
ing machine learning [20], and where dealing with a priori
unknown formats has been elevated from an idle thought
experiment to a routinely used job interview question [36].
In this paper, we will share a success story of handling one
of such file formats, with the pattern language technology
(terminology by Angluin [1]).

Raincode Labs is an independent company providing be-
spoke compiler services. One of our clients in the banking
sector, which, being NDA-bound, we will have to call A,
owns a multi-million line codebase, developed over decades
of company growth and containing most of its business rules
and IT assets. Besides COBOL and PL/I which we have learnt
to handle with ease, grace and experience, the codebase con-
tains almost 70k modules in a fourth-generation language we
will call B. Even though A has over 100 developers actively
creating new software in that language on a daily basis, it
has been classified as a liability for the future and scheduled
for retirement in its current incarnation. We are now in the
process of writing a full-fledged compiler for B targeting
the .NET Framework. When the project is completed, it will
allow A to deploy their products on commonplace hardware
or modern platforms such as Azure, to write hand-tweaked
components in modern programming languages such as C♯

and, most importantly, to hire young professionals otherwise
frightened off by the prospect of learning an obscure dying
language as the first job requirement.
The documentation of B is partly non-existent, partly

outdated and ultimately protected legally by an explicit dis-
claimer that only paying customers of B’s current rights
owner are allowed to read it. The source artefacts come in
the form of five different serialisation languages that B’s
infrastructure exports them in. These five notations are not
synchronised: only one looks like a programming language,
one more is more of a markup language, another one is syn-
tactically and conceptually close to JSON, another one to
LISP, and finally there is one notation with position-based
strings (think Excel in ASCII, example on Figure 1). We
will call the latter notation C. All five are important for the
healthy functioning of the system, since they define data and
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$$FILE 06/07/2017 23:59:59
$$FOO ABCD Y 06/07/2017 23:59:59 XYZ
A 1 00010 00 0000 Y Y N Y NAMEA NAMEB S
C 2 00015 02 0000 Y Y Y Y NAMEDDDD NAME EEE S
F 5 00030 00 0020 Y N N Y NAMEG NAMEH S

$$BAR EFGHKLMN Y 06/07/2017 23:59:59 N/A
A LONGER_NAME_FOR_ENTITY 999 10.0
A ANSWER_TO_THE_ULTIMATE_QUESTION 42 7.5

Figure 1. An obfuscated snippet of what a file in C may look
like. The codebase contains over 20 MLOC or 3 GB of “code”
like this, scattered over more than 20k files.

metadata fragments that complement one another. However,
the first four notations turned out to be feasible to handle
with a home-grown parser generator, technically a straight-
forward PEG [12] implementation with backtracking and
memoisation [11], which yielded sufficiently short grammar
engineering times (all grammars total under 500 LOC) and
adequate performance in production (I/O bound). Yet, for C
it was noticeably worse for the following main reasons:

• No position orientation in PEG or any other conven-
tional parsing techniques [15]. The focus of almost all
software languages since FORTRAN and COBOL on
volatile positioning has resulted in a bias against hard-
wired positions in parsing: column information may
be a bit hard to obtain and the generative technology
around parsing at best does not provide help, and at
worst prevents any good designs.

• Bidirectionality support is weak. We needed to in-
crementally [49] co-develop the data structure and
its bidirectional mapping to a textual representation
for reading and writing, to be able to change it fre-
quently and to see those changes propagated every-
where painlessly.

• Error reporting, handling, as well as recovery and cor-
rection should be stronger than in mainstream cases
but still not relying on ad hoc heuristics typical for
handling unstructured data.

• Since the process of reverse engineering both B and
C from the codebase is challenging enough, we could
not afford to add any further complications to the pro-
cess. In particular, the process of writing a grammar
or a parser for C is naturally incremental and includes
performing little experiments to support or refute syn-
tactical hypotheses.

• Finally, as a matter of principle we could not rely on
third party products. The solution must be possible to
develop, understand and debug in-house, and maintain
for decades to come.

All these objectives were successfully reached with PAX
(short for PAttern eXtractor, and also a Latin wordplay be-
cause this tool brought some peace into the project), the

solution we developed. In § 2 we sketch the landscape of
existing technologies that were at our disposal and provide
related work points for those who would like to consider sim-
ilar techniques deeper. In § 3 we describe the first part of the
solution, namely the metamodel and the syntax for writing
specifications for pattern languages. Three core components
are defined and considered there: patterns (pieces of a string
with varying structure), commitments (structural definitions
for each pattern) and bindings (mappings between a com-
mitted pattern and a node in a resulting hierarchical data
structure). In § 4 the next part of the solution is sketched and
assessed: how to infer such a specification from a fairly large
number of positive code examples? Three main problems
with the purely inferred deliverable are identified and de-
scribed. The next section, § 5, lists several kinds of artefacts
that are generated by PAX from the specification: a parser, an
unparser, data types, tests, etc. A summary of the project and
the paper is given in § 6 which concludes the manuscript.

2 Theory
Program synthesis by example is an old and mature do-
main. It gained popularity in the 1970s, first conquering
the database/query world [29, 50]. It was quickly discovered
that the same approach is applicable to small program infer-
ence [8, 10, 23, 42], search queries [27], interaction/editing
patterns [6, 24, 33, 47], navigation/metaprogramming [46],
requirements engineering [26], synthesised proofs [17, 31],
visual/concrete mappings [34], model transformation [13, 41,
44, 45], spreadsheet transformation [16, 18], program trans-
formation [37, 38], program correction [21, 22], etc. The ones
most close to our work are directions of grammar(ware) in-
ference/acquisition [40], which can be roughly classified into
six families of methods:

• Identification in the limit [14] builds a representation
from a sequence of samples marked with their desired
correctness and converges on the target language in a
finite number of steps or in finite time, both unknown
beforehand. The point when the inferred grammar has
converged, is also impossible to determine without
applying additional mechanisms such as Angluin’s
telltales [2]. These methods are the best known but the
most prone to overgeneralisation. They also diverge
for any grammar class from the Chomsky hierarchy,
unless negative examples are provided.

• The probably approximately correct [43] learningmodel
is a weaker form of identification in the limit, and car-
ries a compromise between accuracy and certainty,
allowing to converge in polynomial time for some sub-
classes of languages and automata. There is a plethora
of automata-based methods of inference that could
technically be classified into this family, starting all
the way from Chomsky [9, 39], they work by impos-
ing a number of (sometimes mystically looking for
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outsiders) limitations on languages or automata, and
using those in formally proving the convergence. Some
of these algorithms have near-linear complexity [3] or
are sufficiently effective without negative examples [5],
both qualities attractive for practical applications.

• Concept learning [4] uses a teacher/oraclewhich knows
about the language and can answer several kinds of
questions, of which membership (“is this program
grammatically correct in this language?”) and equiv-
alence (“is there a syntactic difference between these
two programs in this language?”) are most important
for inference of software languages, since they help
eventually building a language recogniser and a parser.
(In this terminology, the methods from the previous
category are limited to membership queries).

• Incremental reconstruction [32] integrates the user of
the system tightly into the workflow: by providing
a few examples of how code snippets map into code
model elements, a semiparser [48] is generated that
handles as much input as it can; the exceptional cases
are then used to develop new mappings for new itera-
tions, which continue until the code model obtained
in such a way is sufficient for the task at hand (usually
some form of reverse engineering and program anal-
ysis, for which precise parsing is often unnecessary
luxury).

• Parser synthesis [25] is an idea of inferring not just
automata or grammars, but grammarware—language
processors such as recognisers, parsers, validators,
linters, formatters, etc. There have been substantial
breakthroughs recently concerning inference for in-
puts [7, 19] or outputs [28, 35] of grammarware.

• Compiler inference [30] is the dream of having seman-
tics and runtime inferred by example as well, and ar-
riving at a fully functional compiler (or a similarly
advanced language processing tool: an integrated de-
bugger, a build system, data binding synchroniser, etc)
automatically by letting a smart algorithm consume
examples, comes up with hypotheses and tests them
against the oracle. This is a very tempting setup which
for some cases will undoubtedly work, but for now it
remains a well-planned fantasy.

The algorithm we end up using in § 4, falls into the second
(PAC) category but also fulfils promises of the fifth (parser
synthesis) since we generate parsers, unparsers and data
structures from the inferred spec, as shown in § 5. Our al-
gorithm is vaguely based on Angluin’s approach to finding
patterns common to a list of strings [1, 5], without the lim-
itation on the number of patterns per string, but with an
additional limitation on column-based pattern borders. Ob-
viously, adjustments had to be made for inferring several
unrelated families of pattern languages simultaneously based
on section headers (e.g., on Figure 1 lines 3–5 are written in

one format and lines 7–8 yield a different, unrelated one), as
well as for multiple inclusions of the same pattern within
one string (which were avoided in prior work since they
make the otherwise regular languages context-free or even
context-sensitive).

3 Specification
Let us first assume that we need to write patterns manually
(because the pessimistic design assumes that manual adjust-
ments will be needed in any scenario). A glance at Figure 1
can help form the following hypotheses and assumptions:

• The format of C is strictly line-based.
• One file contains several blocks.
• Each block has a specially formatted header.
• Lines’ structure varies per block they are in.
• Some columns are filled, some right or left padded.
• Spaces separate columns as well as occur inside them.
• Columns are of different types.

We will need to be able to specify three kinds of rules:
patterns (where each begins and ends), commitments (what
is the structure of each pattern) and bindings (how to extract
information from a structured pattern and how to put it back).
The combination of these three provides enough information
to generate the parser for C, the target data structures that
the parser binds the uncovered structure to, and the unparser
to serialise the objects back to C so that they can be saved
as valid artefacts compatible with the current infrastructure
at A.
Patterns in PAX are best explained by example. For lines

3–5 from Figure 1 the pattern would look as follows:
_ _ _____ __ ____ _ _ _ _ ________ ________ S
A B C D E F G H I J K

The concrete syntax is that the first line of the pattern
definition contains hard-coded literals (in this case spaces
and a capital S) and contiguous underscores which signify
a placeholder for the pattern. Many alternative notations
were considered but rejected: the solution had to work with
extremely long lines (hundreds of characters), and this setup
allows for visual debugging by simply copy-pasting a failing
test case next to the pattern for visual examination, such as:
A 1 00010 00 0000 Y Y N Y NAMEA NAMEB S
_ _ _____ __ ____ _ _ _ _ ________ ____ ___ S
A B C D E F G H I J K

Commitmentwithout a binding specifies the internal struc-
ture of the pattern. During parsing it be recognised but not
stored in any field of a data type. For instance, it could be:
:- D (00|99|42| )

Which means that the pattern D can contain two spaces
or any of the three allowed numeric values, but never any-
thing else. For pretty-printing, the last of the given options
is usually taken (since there is no binding, the actual value
of D is not stored in the tree).
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A binding establishes a link between the information un-
covered in the source file, and the information in memory
about a newly created structural object. A binding can (and
usually does) contain a commitment and may contain trans-
formation modifiers. The full list of bindings for the lines of
the first block of Figure 1 is:
enum Type := B:(Integer/String/Boolean) [125]
int Size := C
int Fraction := D
int Occurrence := E
bool Code1 := F?TF [YN]
bool Code2 := G?TF [YN]
bool Code3 := H?TF [YN]
bool Code4 := I?TF [YN]
str Name1 := J~ [A-Z]+
str Name2 := K~

The first of these is an enumeration binding, it contains a
limited list of options allowed for the pattern (given at the
end of the line), and a slash-separated list of values that will
be used as enumeration values in the resulting data type.
Lines 2–4 contain integer bindings, and they do not include
an explicit commitment simply because both parsing of an
integer and unparsing it with proper formatting, is built in C♯

and .NET, and we are reusing it instead of crafting our own
regular expressions. Lines 5–8 are Boolean bindings, which
have two allowed values mapped as true and false values
respectively. The last two are string bindings, the first one of
which contains an explicit commitment and the second one
is taken verbatim. The trailing tilde after the letter name of
the pattern, means left alignment: the value will be trimmed
on the right when parsing and padded on the right (by spaces
for strings and zeroes for integers) when unparsing.

Such a specification with patterns, commitments and bind-
ings, is perfectly writeable and maintainable by hand, with-
out any inference in sight. It is also fairly easy to create and
debug, since the process basically involves copying a failing
case next to it and adding a few underscores to the pattern.
However, hoping to process millions of lines without 100%
automation is deadly for any project with limited resources
such as ours.

The final PAX specification for C used in production, con-
tains 17 patterns, 115 commitments and 120 bindings. Four
lines (bundles of patterns, commitments and bindings) are
explicitly reused across blocks of different kinds, without
this explicit reuse the numbers would have been slightly
higher.

4 Inference
Luckily, the inference algorithm did not have to perform
well, since essentially it was meant to run once on our side
and never come in direct contact with A. The main con-
ceptual differences algorithmically between PAX and the
Arimura–Shinohara–Otsuki [5] variant of pattern language

inference [1], were already listed in § 2, but one more is
worth mentioning. We have augmented placeholder increase
heuristics with the knowledge of the alphabet: for instance, if
more than half of uppercase Latin characters were observed
in the same position, then its specification would be auto-
promoted to the entire alphabet; if two adjacent placeholders
are merged, then the most generalised of them overrides the
specifications for the other; patterns specified of only 0–9
digits were auto-casted to integers; patterns often beginning
or ending with zeros or spaces were assigned appropriate
padding, etc. For this project the heuristic worked extremely
well, but it is obviously not universally applicable.

The first version of the PAX specification for C was hereby
inferred from the codebase, and further refined manually.
There were three main problems with the inferred specifica-
tion, leading to the need of refinement:

• Underspecification of commitments. There were sig-
nificantly many places where even having millions of
examples was not enough to infer a thorough generali-
sation. In particular, very long string patterns reserved
for strings of, say, 40 characters, were rarely reach-
ing 40 characters just because no line in the codebase
contained a sample that used the entire allotted space.
Another example is numeric fields: there were some
that reserved five positions because they were meant
to store numbers between 0 and 65535, but the actual
values in the codebase barely reached above 100, obvi-
ously leading to misrepresentation of the upper digits
as ‘0’ constants.

• Underspecification of bindings. Consider a situation
when a particular column is a separate pattern that
contains only one of two characters: M and S. The au-
tomated inference algorithm has no way of knowing
whether this should be just checked for commitment,
or mapped to a string, a Boolean (which one is true?),
an enumeration, etc.

• Uninformative names in bindings. This was a problem
unsolvable not only for the inference algorithm, but
also for compiler experts. Collaboration workshops
were set up with domain experts from A who shared
their “conventional” knowledge on which string col-
umn is a “long name” and which one is a “system
identifier”; on why “L” is an abbreviation for “display”
and on “5” being a code for character type. It is mo-
ments like these that make one seriously doubt that
compiler inference as envisioned by Mernik et al. [30],
is ever going to happen.

The lack of overspecification problems is a consequence
of using the approach of learning from positive data, and
evidence that our alphabet heuristic did not violate that
property of pattern learning [1, 5].
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5 Generation
The parser generated from the PAX specification, did not use
any mainstream parsing technology [15], but thanks to the
simplicity of the C notation, it did not have to. Essentially the
entire parser is a straightforward nested finite state machine.
At any given moment, if the next expected piece is a literal
string, a substring of the appropriate length is taken from
the input and compared to the constant; if the next piece is
a pattern, its commitment is checked. If this step succeeds,
the binding takes place. Because of this level of granularity,
error handling is extremely precise and valuable for both
grammar debugging and incorrect instance recovery.
Just as PAX specification was deliberately made possible

to decouple from its inference, the parser was made decou-
pleable from the PAX specification: all the code generated
by the PAX tool is smell-free, well-formatted, readable, rea-
sonably documented code. There was no need (as of now)
to decouple the parser, but for the rest of its lifetime it is
maintainable as a standalone artefact, not as a product of an
application of a pipeline of complex algorithms. The entire
size of the C parser is just below 3000 LOC in C♯ . The low
hanging fruits in optimising it without damaging readability,
were also harvested: all regular expressions are precompiled
and cached, string manipulations are minimised (strings in
.NET are immutable), one-symbol comparisons are donewith
char, not with string, etc. Parsing the entire codebase of
A written in C, takes under three minutes on an average
developer’s laptop and is I/O bound.

In addition to producing the parser, PAX produces the data
files as well: both for the enumerations (which are shared
across algebraic data types, with values collected per enu-
meration name) and for the actual AST nodes (from bind-
ings). There are no scientific surprises or breakthroughs in
how this works, but practically automating this synchroni-
sation was a major time saver allowing many minor tweaks
to the PAX specification to be painlessly propagated to all
components—literally with the click of a button. Due to .NET
specifics, pretty-printing is implemented as an override-
method ToString() for the proper classes and as an exten-
sion with public static string ToString(this ...)
for the enumerations (which may not contain methods). This
allows programmers using those data types to handle them
the same way.

A PAX specification can also be used as a model for testing,
where variations in patterns are exercised by generating a
large number of examples that are guaranteed to be correct
or incorrect. This was useful as a unit testing tool during
early stages to eliminate a few off-by-one errors in the gener-
ated parser, and later as a regression testing discipline when
implementing parser optimisations.

6 Conclusion
In this paper, we reported on a case study in parser genera-
tion by example, and explained the motivation, genesis and
application results of a tool PAX (PAttern eXtractor) capable:

• using a pattern language specification composed of
patterns, commitments and bindings, to generate a
working parser, unparser and all accompanying data
classes;

• using a codebase of examples in a particular language,
to infer such a pattern language specification of that
language by incrementally learning the pattern lan-
guage from variations in positive data;

• using the pattern language specification as a testing
model, to generate both positive and negative exam-
ples to validate the correctness of the parser and un-
parser.

The process followed in this project, went as follows. We
have let the inference tool produce the first approximation
of the language specification by analysing the existing code-
base line by line. Then, we adapted it manually, relying on
regression testing and refining the specification incremen-
tally based on conventional grammar engineering principles
as well as observed behaviour. After the entire codebase
seemed to have been parsed correctly, we held joint design
sessions with senior engineers from the company owning the
codebase, to define semantics of the inferred pieces (which
was crucial for bindings in the parser but also later for im-
plementing the compiler itself).
Additional case studies are needed to make any claims

about the universality of either our approach or the tool
we developed. However, the presented project is somewhat
nontrivial and may be amusing as an industrial application
of (usually very formal and theoretical) pattern language
approaches to successfully tackle a legacy software language.
The story of PAX demonstrates how to infer the com-

piler machinery (data structures and (un)parsers) by example
from a legacy codebase. For other legacy languages with a
similar fixed-position structure, it can be applied verbatim,
cutting down implementation time to a few days. Legacy
languages that are significantly different from C, will have
to be searched thoroughly for other properties that could
make inference practically feasible.
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