
Parsing @ IDE
Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

ACM Reference format:
Vadim Zaytsev. 2017. Parsing @ IDE. In Proceedings of the Fifth
Annual Workshop on Parsing Programming Languages, Vancouver,
Canada, October 2017 (Parsing@SLE’17), 1 pages.

Position Presentation Proposal
It is widely known that most grammars are domain-specific,
in a sense that they are created for a narrow purpose: to parse
programs that are to be executed, or to analyse specific parts
of programs, or to document the structure of a language,
or to guide a pretty-printer, etc. One commonly overlooked
purpose is IDE support, which would be nice to discuss at
the workshop.

Typical IDE-supported features include: syntax highlight-
ing of otherwise monotone text, word selection for scope
visualisation, code folding for hierarchical program blocks,
visual editing of naturally graphic elements, debugging exe-
cutable programs, discovering and running tests, performing
dependency analysis, suggesting refactorings, displaying vi-
olations of coding conventions, providing code navigation
to allow programmers to quickly jump between definitions
and uses or to follow a call trace, configuring a build, display-
ing tooltips with documentation, and many others. Some of
them are possible to implement based on a parse tree or an
AST, but many fall into one or more of the following prob-
lematic categories: (1) need to work on partially incorrect
programs (e.g., code completion); (2) must work significantly
faster than a complete parser (e.g., syntax highlighting); (3)
have no sufficiently advanced parser available or require
noticeably more information than the parser provides (e.g.,
detecting missing dependencies).

Most research done on this topic is limited to getting basic
IDE support like syntax highlighting by either tweaking a
grammar by adding ad hoc manually written code (e.g., to as-
sign colours and implement name suggestion strategies [4])
or by enhancing the grammar with annotations that carry
enough information for the underlying universal algorithms
to work (e.g., to recover from errors [2, 3]). For getting faster
towards a sufficiently detailed parse result, in the industry it
is common (see SublimeText, TextMate, Cloud9, MakePad,
CodeMirror, Raincode, ...) to use ad hoc combinations of sim-
plistic parsing algorithms (e.g., recursive descent or parsing
expression grammars) and regular expressions to perform
some form of approximate/island/robust parsing collectively
known as “semiparsing” [6]. For some families of languages

even their representation in a “grammar” is still in its in-
fancy, which is the case for at least spreadsheet-based [1]
and pattern languages [7]. Beyond all that, it is still true that
“support for debugging and testing a program written in a
DSL is often nonexistent” [5].

In practical language/compiler development, IDE integra-
tion is an important part of DSL deployment and is often
crucial to gain clients’ acceptance. What exactly are all the
properties specific or even exclusive to IDE grammars; how
to address the challenges of rapid language prototyping;
which methods to use to create coarse-grained IDE-specific
language definitions and to refine them incrementally to sup-
port more advanced features; is still unknown and demands
further work and investigation.

References
[1] Sorin Adam and Ulrik Pagh Schultz. 2015. Towards Tool Support for

Spreadsheet-based Domain-specific Languages. In Proceedings of the
14th International Conference on Generative Programming: Concepts
and Experiences (GPCE). ACM, 95–98. https://doi.org/10.1145/2814204.
2814215

[2] Maartje de Jonge, Lennart C. L. Kats, Eelco Visser, and Emma Söder-
berg. 2012. Natural and Flexible Error Recovery for Generated Mod-
ular Language Environments. ACM Transactions on Programming
Languages and Systems (ToPLaS) 34, 4, Article 15 (Dec. 2012), 50 pages.
https://doi.org/10.1145/2400676.2400678

[3] Lennart C. L. Kats, Maartje de Jonge, Emma Nilsson-Nyman, and
Eelco Visser. 2009. Providing Rapid Feedback in Generated Modu-
lar Language Environments: Adding Error Recovery to Scannerless
Generalized-LR Parsing. In Proceedings of the 24th Annual Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, 445–464. https://doi.org/10.1145/1640089.1640122

[4] Federico Tomasetti. 2017. Kanvas: generating a simple IDE from
your ANTLR grammar. Online. (2017). https://tomassetti.me/kanvas-
generating-simple-ide-antlr-grammar/

[5] Hui Wu and Jeff Gray. 2005. Automated Generation of Testing Tools
for Domain-specific Languages. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
ACM, 436–439. https://doi.org/10.1145/1101908.1101993

[6] Vadim Zaytsev. 2014. Formal Foundations for Semi-parsing. In Pro-
ceedings of the Software Evolution Week (IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering), Early Research
Achievements Track (CSMR-WCRE 2014 ERA), Serge Demeyer, Dave
Binkley, and Filippo Ricca (Eds.). IEEE, 313–317. https://doi.org/10.
1109/CSMR-WCRE.2014.6747184

[7] Vadim Zaytsev. 2017. Parser Generation by Example for Legacy
Pattern Languages. In Proceedings of the 16th International Confer-
ence on Generative Programming: Concepts and Experience (GPCE),
Matthew Flatt and Sebastian Erdweg (Eds.). ACM, 212–218. https:
//doi.org/10.1145/3136040.3136058

1

https://doi.org/10.1145/2814204.2814215
https://doi.org/10.1145/2814204.2814215
https://doi.org/10.1145/2400676.2400678
https://doi.org/10.1145/1640089.1640122
https://tomassetti.me/kanvas-generating-simple-ide-antlr-grammar/
https://tomassetti.me/kanvas-generating-simple-ide-antlr-grammar/
https://doi.org/10.1145/1101908.1101993
https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://doi.org/10.1145/3136040.3136058
https://doi.org/10.1145/3136040.3136058

	References

