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Abstract
Legacy software systems were often written not just in pro-
gramming languages typically associated with legacy, such
as COBOL, JOVIAL and PL/I, but also in decommissioned or
deprecated 4GLs. Writing compilers and other migration and
renovation tools for such languages is an active business that
requires substantial effort but has proven to be a successful
strategy for many cases. However, the process of covering
such languages (i.e., parsing their close overapproximation
and assigning the right assumed semantics to it) is filled
with unconventional requirements and limitations: the lack
of useful documentation, large scale of codebases, counter-
intuitive language engineering principles, buggy reference
implementations, fragile workarounds for them, etc.
In this short paper, we motivate the incremental nature

of software language engineering when it concerns legacy
languages in particular, and outline a few related challenges.
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1 Introduction
There are hundreds of software languages currently in use,
and only a few dozens of them are in widespread use. For the
rest, it is possible to find systems written in those languages,
deployed in ecosystems characteristic for them and being
worked on by developers familiar with the fine details of
language constructs and context, but it is not realistic to hire
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new engineers familiar with the language, unless they are
switching from one such non-mainstream project to another.
Most of these not-widespread languages are prototypical,
experimental, esoteric or domain-specific, which means that
they were meant to cater to very peculiar needs of a limited
group of people solving specific problems. The remaining
ones are what people refer to as legacy languages.
Many languages that became legacy, were once called

fourth-generation programming languages (4GLs), the name
signifying the fact that they came after the first genera-
tion (machine codes), second generation (assemblers) and
third generation (compiled ones). Basically, 4GLs are DSLs
(domain-specific languages) [6, 10, 16, 28, 34, 39, 41, 44] desig-
ned around the 1980s before powerful languageworkbenches
and other software language engineering technologies made
the process easy and (to some extent) error-proof. To reflect
the reality closer, we borrow the term “software languages”
from the domain of software language engineering [2, 33]
where it means any language used in creation of software,
be it a programming language, a database schema, a markup
notation or a type system.
Besides being “DSLs for database applications” [26, 28],

many 4GLs can be regarded as badly designed DSLs because
they come short on the number of issues that are typically
associated with DSL benefits [6, 28, 39, 41]:

• domain-specific notations [28] are missing or poor;
• domain-specific abstractions [28] are not beyond
what a library would offer [39];

• tool support for analysis, verification, optimisation,
transformation [28], simulation and animation [41] is
extremely limited;

• conciseness [41] and self-documentation [6] claims
are subpar to modern alternatives;

• productivity andmaintainability boosts [6] are un-
dermined by the impossibility of hiring new developers
to use outdated technology;

• reliability allegations [6] rest on deployment plat-
forms that are no longer desirable for some reason
such as high costs;

• any hope for portability [6] is destroyed by vendor
lock-in on obsolete frameworks and platforms;

• conservation and reuse of domain knowledge [6]
are not achieved due to leaky abstractions [39];

• testability [6] opportunities are usually missed;
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• the lifespan of a DSL is that of months or years [39]
while 4GLs outlive their originally intended lifespan
by decades.

Programs in a 4GL are typically compiled (essentially desu-
gared [23]) into a 3GL and then fed into a standard compiler,
possibly complemented by code fragments written directly
in the 3GLs (and sometimes 2GLs [3]) for performance and
expressiveness reasons. Each 4GL is usually known by a
small and steadily shrinking group of people and used inside
companies that have their entire business logic expressed
in that particular 4GL. Eventually every 4GL is decommis-
sioned, and then the companies using it are faced with a
choice of migration, re-engineering or bankruptcy. The typi-
cal technical options are:

• Language conversion [37]. The entire existing code-
base is converted to conform to a different language.
The closer the source and target languages are to each
other, the closer this conversion gets to a so-called
“syntax swap” which is a fairly straightforward and
testable procedure with good chances of success. If the
conceptual gap between the two is too great, native
constructs of the source language creep in an emulated
form into the code in the target language, and pollute
the codebase. Code converted in such a way requires
expensive specialists versed in both source and tar-
get languages in order to perform any maintenance
actions on the result.

• Automated refactoring [4, 11]. The existing code-
base is fed into the 4GL compiler, and the produced
code in a 3GL is taken as its representation. Such re-
presentation is honest since it is literally the same
code that was being deployed all along, but it is also
ugly and contains a lot of artefacts that made 3GL
code generation easier but are considered bad patterns
and code smells in manually written code. For COBOL
such artefacts include duplicate code, PERFORM THRU
clauses, GO TO statements, etc [4]. Such code is then
refactored automatically to replace harmful patterns
with functionally equivalent counterparts of higher
quality.

• Complete reengineering. The existing codebase is
used as a source of information about the business
logic, which is then reimplemented with modern tools
and frameworks. This path is risky, error-prone and
labour-intensive, but feasible for projects with consi-
derably more legacy boilerplate than core logic.

• Compiler reimplementation. Instead of reimplemen-
ting the actual code of a software asset, it can be preser-
ved in its original state, while the infrastructure around
it gets reengineered. Compilers, debuggers, refactoring
aiding tools and even IDEs [46] form this infrastruc-
ture, and to replace them means to reverse engineer

the language from the existing tools and documenta-
tion, and reimplement it with modern technology. It is
one of the most costly options, but also the most stable
one in the long run: the newly redeveloped compiler
will be under control, full or partial, of the code ow-
ner, who can perform or request many sought-after
modifications and upgrades that are impossible with
legacy language processing tools. Since the problem of
incremental coverage of a software language manifests
itself the worst in this scenario, and also since the pa-
per author works for a company regularly providing
such services (i.e., of compiler reimplementation or
automated refactoring) to paying customers, we will
focus on it for the rest of the paper.

A new compiler requires a substantial effort to become
operational, since even writing a quality parser for a COBOL-
like language takes 2–3 years, according to professionals [27].
However, it provides numerous advantages such as modern
deployment platforms (e.g., cloud), modern IDEs (e.g., Eclipse
or Visual Studio), as well as the opportunity to evolve the
language further in a desired direction—the combination of
these offers a threatened company a very bright future.

Besides classic compiler design and development challen-
ges elaborately articulated in many books [13, 44], compiler
engineering for legacy languages faces others such as the
lack of documentation (which either does not exist, or is
outdated beyond usefulness, or may not be used for legal rea-
sons) or a mixture of language rules (imposed by the original
compiler) and company conventions (imposed by in-house
coding style manuals).
The process of incrementally covering a legacy software

language goes as follows:

• there is a legacy language, represented by a complete
codebase of the customer company and complemented
by the knowledge of the in-house experts;

• there is a grammar that covers some of the language
and is being continuously worked and improved on;

• a parser is generated automatically from the grammar
and tried on all available code samples;

• one of the failing code samples is considered by the
grammar engineer who changes the grammar to ac-
commodate it;

• the cycle is repeated until the entire codebase can be
parsed;

• semantics of a compiler, interpreter, translator, refacto-
rer, etc, are assigned to syntactic constructs that occur
in parse trees, also in an iterative way with substantial
amount of testing and verification;

• very occasionally the grammar is revisited and refined
until the codebase can be comfortably compiled or
migrated;
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• the life cycle continues naturally, evolution being dri-
ven forward by feature requests and bug reports by
end users.

The idea of incremental grammar engineering was con-
ceptually proposed by Klint et al. [21], there are case studies
reported in detail [1, 42], as well as techniques to converge
multiple imperfect grammars [25] and many others that can
also be useful. These techniques can be either applied di-
rectly or used from a language workbench [7, 9] such as
Rascal [22], Spoofax [17], ASF+SDF Meta-Environment [20],
JastAdd [14], Xtext [8], Intentional [32] or MPS [40]. As a
more recent example of a realistic combination of grammar
engineering, tool building and static program analysis, we
refer to Vavrová et al [38]. However, the incremental aspect
is not researched well enough to provide tool support for it
(which would go beyond conceptual process guidelines).

There is substantial research on incremental parsing, which
is usually a combination of semiparsing [43] and ad hoc al-
gorithms of selective or lazy parsing. However, they solve
a much less painful problem of reducing parse time, as op-
posed to reducing compiler development time, which has
substantially bigger impact on developers’ lives. It is possi-
ble for powerful parallel parsing techniques in combination
with bug prioritisation [19], fault localisation [12] and error
clustering [5] to become somewhat useful at some point, but
will not change our lives drastically in the near future.

2 R&D Challenges
We identify at least the following research challenges:

2.1 Regression Parsing
Similar to regression testing [31] we would like to be able to
quickly and incrementally check if the change in the gram-
mar or its surroundings has had any detrimental effect on
the standing coverage of the language. Parsing is understood
here in a broad sense [47] as the process of recovering struc-
ture, so it can involve, depending on the problem, regular
matching, context-free parsing, abstract syntax graph ge-
neration, semantic analysis, symbol table population, etc.
Reparsing the entire codebase is definitely an option, but
the usual scale of legacy portfolios is in the tens or hund-
reds of millions of lines of code, which unnecessarily brings
up scalability and performance challenges toward the very
beginning of the project.

During later stages of the project this typically takes place
on a separate server running the nightly build system. It is
useful to get a daily report emailed to the lead developers,
but daily reports neither have the same role nor effect on
them as live or on demand feedback.
For example, in one of our projects, compiling a 4GL to

.NET, if the regression testing suite involves recompilation of
the entire codebase of the one customer company, including
preprocessing and performing some basic sanity checks like

PEVerify [29] on the resulting DLLs, the duration of one test
run is around 48 hours. As a consequence, it only runs once
a week on a server, and all involved developers resort in
their daily work to manually created tests of limited scope,
which take time and effort to create and do not guarantee
soundness nor coverage.

2.2 Grammar Inference from Codebase
The field of grammatical inference is vast [36] and full with
techniques that are too theoretical and slow to be applied
generally, but can become quite attractive if optimised by
taking context conditions into account. In particular for incre-
mental coverage of software languages, it can be interesting
to infer a grammar that covers most of the input language
or the one that covers all of it but requires a human engineer
to name identified constructs.
The same conceptually but utterly un-automatable pro-

cess is that of semantic inference. In the case of the total
lack of documentation, compiler engineers need to infer the
semantics manually from the codebase. This process is com-
plex and error-prone, and involves investigating the vicinity
of the construct in question in the code (e.g., assigning input
parameters and processing outputs of a library function),
leveraging previous knowledge of similar constructs in other
languages (e.g., it is safe to assume that a picture clause in
any language will work similarly to COBOL’s PICs) and wor-
king in close collaboration with living language experts (e.g.,
for date and time processing there is no standard library on
the mainframe, so every language does it in a different way
incompatible with alternatives).
For example, consider a recently finished project with

position-sensitive pattern languages [45]. We needed a very
fast parser of a notation that was based on character positi-
ons within a line, so we built a custom parser generator, but
also used grammatical inference techniques to create the first
approximation of a specification covering the language. The
specification was further refined to adjust underspecified
commitments (e.g., places which were inferred as “three ze-
roes followed by two digits” while the true specification was
“five digits” and accidentally the codebase did not contain any
value in that field larger than 100), underspecified bindings
(e.g., if one position contains a one-letter code from a limited
character range, it is impossible for an automated algorithm
to decide to represent it in the AST as a string, a Boolean, an
enumeration, etc), and uninformative names (e.g., numeric
codes standing for enumerated concepts, or several obvi-
ously string names that are used for database access, code
and UI bindings—impossible to differentiate automatically).

2.3 Test Suite Inference from Codebase
The current practice of regression parsing is to approximate
the codebase with a test suite which must be gradually desig-
ned by hand and coevolve [24] with each discovered detail of
the language. Alternatively, this can be done automatically by
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a some combination of test prioritisation [35] and test suite
minimisation [38]. Modern machine learning techniques ba-
sed on the naturalness of software [15] (the observation that
software exhibits many traits typical for natural language
corpora), look promising, and were shown to yield positive
results in the past with language identification [18].

For example, to start making any claims of correctness of
a compiler, we need to create an inventory of all the featu-
res of a software language (statements, blocks, expressions,
data types, library functions, etc), which is an extremely
labour-intensive process that is also error-prone. The cur-
rent practice is to create this inventory manually from the
codebase, co-evolve it with the grammar and at some point
share with the customer’s language experts to get feedback
on its completeness. Eventually each of the constructs menti-
oned in the inventory, is covered by a few test cases—which
are, again, written manually or generated by ad hoc model-
based frameworks.

2.4 Dependency Analysis within the Compiler
Many incremental techniques can be based on the knowledge
of dependencies existing within the grammar or, speaking
broader, within compiler components, since it enables fast
and cheap impact analysis of the changes. There is a substan-
tial body of techniques and tools on change impact analy-
sis [30], but to the best of our knowledge, they have not yet
been extended to grammars, parsing specifications and other
compiler-building models, nor to compilers themselves.
For example, in a freshly made snapshot of the codebase

delivered by the customer we see that identifier names can
be followed by () which signifies that a call is being made
to some callable entity represented by the identifier. The
grammar is readjusted to accommodate that. Do any other
parts of the grammar need to be co-evolved? Do any parts of
the code generator need to be redeveloped as well? The state
of the art in this issue is randomly poking around and “thin-
king hard” which is not the most sound software engineering
strategy, even if it is the most widely used one.

2.5 Dependency Analysis on the Grammar vs.
Samples

Alternatively or complementary, we can investigate and de-
velop algorithms for tracing dependencies between the co-
debase (or some representation thereof like a repository of
parse trees) and the grammar, and updating the parsability
metadata incrementally whenever needed or whenever the
CPU is idle, to provide the results of regression/impact ana-
lysis to the grammar engineer.

For example, a compiler engineer learns that the software
language being reimplemented, supports implicit conver-
sion of decimals to integers by means of truncation. The
change involves the classic implementation strategy for type
conversions (each expression node in the AST having two

pre-computed type attributes: the actual type and the ex-
pected type), as well the corresponding adjustments in the
code generator. Do all tests need to be re-run? Only type
checking tests? All semantic analysis tests? In any project
of substantial size the question concerns hundreds and thou-
sands of test cases, so the difference in the test runnning
time is hundredfold. The state of the art is to go with the
feel of the engineer and hope for the best for the next full
daily/weekly regression run.

2.6 Neighbour Analysis
A lot of grammar development cycles are lost on tiny tweaks
of features: can you only print a variable or can it be any
expression? is assignment target always one identifier or can
it be multiple? can you call a method on the result of call
of another method? is there an else clause to the if? how
does a default clause of the caseof look like? The answers
to all these questions in mainstream languages are either
straightforward or easily obtained from language manuals
(or even StackOverflow discussions). For legacy languages,
we must follow the trial and error approach. However, it
should be possible, given both the original tested grammar
and the changed one, and detailed enough information about
the language coverage of both, to identify and show exam-
ples of “near misses”— cases that were bluntly rejected by
the original syntactic or semantic analyser and still fail in
the new one but “later” or “better” by some definition. Alter-
natively, some language constructs may initially appear to
be more complex than they actually are, and their grammar
specification can be simplified.

Practical compiler specifications contain a lot of failsafes:
if one of the statements in a block cannot be parsed but a
symbol is known that typically separates adjacent statements
from each other, then it will be parsed as an unknown state-
ment just to let the parsing continue. Similarly on the later
stages, if a call is made to an undefined function, the compiler
will try its hardest to locate the function, but will not fail the
compilation altogether, simply because this function might
be a built-in library function that remained unknown until
that moment. Such implementation strategies are a common
way to achieve parseability and compileability very early on
in the process of covering a software language (legacy or ot-
herwise) and be able to quantify and examine the remaining
bits in high level of detail.

3 Conclusion
In this short paper, we have raised a question of developing a
systematic approach of covering legacy software languages
incrementally. A few challenges were outlined in § 2 to be sol-
ved in developing, testing, validating and deploying parsers
and other form of grammarware. There do not seem to be
major roadblocks in this research direction, but engineering
and architectural challenges are substantial.
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