
Evolution of Metaprograms:

XSLT as a Metaprogramming Language

Vadim Zaytsev, vadim@grammarware.net

Universiteit van Amsterdam, The Netherlands
Raincode, Belgium

Abstract

Metaprogramming is a methodology of con-
structing programs that analyse and trans-
form other programs. Metaprograms them-
selves evolve as well, and there are times when
this evolution means migrating to a di�erent
metalanguage. We illustrate this complicated
scenario by a concrete case of porting gram-
mar manipulation scripts from XSLT to Ras-
cal, and list common metaprogramming fea-
tures from XSLT used in the corpus.

1 Problem and Context

Metaprogramming is a well-established methodology
of constructing programs that work on other pro-
grams [20], analysing [4], parsing [38], transforming [8],
compiling [15], visualising [19], evolving [13], compos-
ing [22], mutating [17], transplanting [3] them.

A typical metaprogram operates on some kind of
structural representation of another program, which it
constructs (by parsing) or takes by interoperating with
the previous tool in the chain. It is traditional for such
representations to be close to trees because termina-
tion proofs on tree traversals are much easier than on
graph rewritings. In some cases the term metapro-
gramming refers to the program transforming itself
(with re�ection, staging, morphing, etc), in which case
it is a form of generative programming [9]. Parsers,
compilers, XML validators, code linters, refactoring
tools, software analysis and visualisation plugins, IDEs
are all examples of metaprograms.

Copyright © 2015 by the paper's authors. Copying permitted

for private and academic purposes. This volume is published

and copyrighted by its editors.

In: A.H. Bagge, T. Mens (eds.): Postproceedings of SATToSE
2015 Seminar on Advanced Techniques and Tools for Software
Evolution, University of Mons, Belgium, 6-8 July 2015,
published at http://ceur-ws.org

Metaprograms themselves evolve as well, and there
are times when this evolution means migrating to
a di�erent metalanguage. For example, a unidirec-
tional chain of grammar/metamodel transformation
steps can be turned into a bidirectional one (e.g.,
XBGF scripts to ΞBGF scripts [37]) � on the level
of language instances this means turning a migration
path (take X, transform into Y, forget X) into an ex-
ecutable relationship (change X, update Y, change Y,
update X, ...). The general problem is too big to
handle at the moment: we have recently successfully
considered a much more focused problem of migra-
tion between metasyntaxes for grammars [34]; the fo-
cus in this project was on migrating grammar-mapping
metaprograms.

SLPS [39], or Software Language Processing Suite,
was a repository that served as a home for many ex-
perimental metaprograms � to be more precise, meta-
grammarware for grammar recovery, analysis, adapta-
tion, visualisation, testing. Around 2012, �nal ver-
sions of such tools were reimplemented as components
in a library called GrammarLab [36]: the code written
in Haskell, Prolog, Python and other languages, was
ported to Rascal [20], a software language speci�cally
developed for the domain of metaprogramming.

Grammar extraction [35] is a metaprogramming
technique which consumes a software artefact contain-
ing some kind of grammatical (structural) knowledge
� an XML schema, an Ecore metamodel, a parser
speci�cation, a typed library, a piece of documenta-
tion � and recovers the essence of those structural
commitments, typically in a form of a formal gram-
mar with terminals, nonterminals, labels and produc-
tion rules. Over the years the SLPS acquired over a
dozen of such extractors, plus a couple of more error-
tolerant recovery tools. The grammar extractors of
SLPS were intentionally implemented in a subjective
way, using the means from the same technological
space where grammars originated from: ANTLR was
used to parse ANTLR grammars, TXL parsed TXL,
MetaEnvironment was handling SDF speci�cations,

1

mailto:vadim@grammarware.net
http://ceur-ws.org

etc. Several of them were essentially mappings from
various XML representations (XSD, EMF, TXL, etc),
implemented, quite naturally, in XSLT [18] to be used
with xsltproc [12] working on top of libxslt [31].

This paper is a preliminary report on reverse engi-
neering metaprogramming features used in 43 XSLT
scripts of SLPS, used for transformation, mapping and
pretty-printing of various trees. To complete it, 10568
lines of those scripts were manually inspected, which
led to identi�cation of 74 common patterns. Then
the scripts were manually annotated by tags referring
to those patterns, 4978 annotations in total. Insights
into the ways XSLT is used in practice for metapro-
gramming activities, can be leveraged to �nd missing
features in proper language workbenches [11], since
we claim the application domain be the same (i.e.,
metaprogramming).

A fragment of such a grammar extractor mapping
is given on Figure 1(a). Readers that can overcome
the overwhelming verbosity of the XML syntax, can
see two templates that match elements eLiterals

and eStructuralFeatures correspondingly, and gen-
erate output elements by reusing information har-
vested from speci�c places within the matched ele-
ments. As a language for metaprogramming and struc-
tured mapping in general, XSLT is pretty straightfor-
ward and provides functionality for branching, loop-
ing, traversal controls, etc., without going too deep
into more complex metaprogramming practices such
as naturally recursive rewriting systems or advanced
traversal strategies. It is also worth noting that XSLT
is an untyped software language, so there is no ex-
plicit validation that all constructs matched and all
constructs produced are type safe.

GrammarLab grammar extractors are objective:
they are all implemented in one metaprogramming
language (Rascal [20, 21]). This is a paradigm di�er-
ent from the one adopted by SLPS that we explained
earlier, but it is also internally consistent and it con-
forms to the more general view of Rascal as a one stop
shop [19]. The only way to properly integrate extrac-
tors into this infrastructure was to re-engineer them
from Python, ASF, Java and other languages to Ras-
cal � mostly this was a manual re-engineering project.
For XSLT the approach was semi-automated: the in-
vestment was justi�ed by the larger number of scripts.
The conceptual proximity of metalanguages also war-
ranted closer investigation.

If we assume that all the types from the input as
well as the output schemata are expressed as Rascal
algebraic data types, and all the named templates in-
voked in this snippet are successfully mapped to Ras-
cal functions, then these matched templates will be ex-
pressed as pattern-driven dispatched functions in Ras-
cal such as the ones shown on Figure 1(b).

2 Corpus

The following 43 �les form our corpus, listed and
linked here for possible replication purposes. One �le,
shared/xsl/xhtml2fo.xslt, was excluded as an outlier
(big program from a domain of document typesetting,
written by di�erent people) to avoid distorting our
data. The number of lines per �le is given in brackets.

� shared/xsl/bgf-format.xslt (191)
� topics/investigation/analysis/bgf-overview.xslt
(35)

� shared/xsl/bgf2bnf.xslt (209)
� topics/export/ebnf/bgf2dms.xslt (175)
� shared/xsl/bgf2dot.xslt (34)
� topics/export/hypertext/bgf2fancy.xslt (287)
� topics/export/rascal/bgf2rsc-unsafe.xslt (192)
� topics/export/rascal/bgf2rsc.xslt (228)
� shared/xsl/bgf2sdf.xslt (203)
� shared/xsl/bgf2tex.xslt (159)
� topics/export/txl/bgf2txl.xslt (167)
� topics/export/hypertext/bgf2xhtml.xslt (254)
� shared/xsl/btf2btf.xslt (22)
� topics/export/source/btf2source.xslt (119)
� shared/xsl/cbgf-split.xslt (9)
� shared/xsl/cbgf2cbgf-context.xslt (165)
� shared/xsl/cbgf2cbgf2cbgf.xslt (46)
� shared/xsl/cbgf2cbnf.xslt (101)
� shared/xsl/cbgf2xbgf-forward.xslt (332)
� shared/xsl/cbgf2xbgf-reverse.xslt (359)
� topics/extraction/w3c/cleanup.xslt (115)
� topics/extraction/ecore/ecore2bgf.xslt (531)
� shared/xsl/edd-export.xslt (24)
� shared/xsl/edd2dcg.xslt (261)
� shared/xsl/exbgf2xbgf.xslt (1828)
� topics/transformation/normalization/subdefs
/extract.xslt (37)

� topics/mutation/expose-root/generate.xslt (21)
� topics/transformation/normalization/subdefs
/inline.xslt (15)

� topics/extraction/ldf/ldf2bgf.xslt (14)
� shared/xsl/ldf2tex.xslt (571)
� topics/export/hypertext/ldf2xhtml.xslt (777)
� shared/xsl/mathml2tex.xslt (41)
� topics/export/hypertext/mathml2xhtml.xslt (42)
� topics/transformation/normalization/post�x
2con�x.xslt (73)

� topics/extraction/relax/rng2bgf.xslt (405)
� shared/xsl/rootprods.xslt (16)
� topics/extraction/w3c/spec2bgf.xslt (120)
� topics/extraction/w3c/spec2ldf.xslt (450)
� topics/extraction/txl/txl2bgf.xslt (296)
� shared/xsl/xbgf2cbgf.xslt (269)
� shared/xsl/xbgf2xbnf.xslt (277)
� topics/export/hypertext/xbgf2xhtml.xslt (410)
� shared/xsl/zoo2tex.xslt (104)

2

https://github.com/grammarware/slps/blob/master/shared/xsl/xhtml2fo.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/bgf-format.xslt
https://github.com/grammarware/slps/blob/master/topics/investigation/analysis/bgf-overview.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/bgf2bnf.xslt
https://github.com/grammarware/slps/blob/master/topics/export/ebnf/bgf2dms.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/bgf2dot.xslt
https://github.com/grammarware/slps/blob/master/topics/export/hypertext/bgf2fancy.xslt
https://github.com/grammarware/slps/blob/master/topics/export/rascal/bgf2rsc-unsafe.xslt
https://github.com/grammarware/slps/blob/master/topics/export/rascal/bgf2rsc.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/bgf2sdf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/bgf2tex.xslt
https://github.com/grammarware/slps/blob/master/topics/export/txl/bgf2txl.xslt
https://github.com/grammarware/slps/blob/master/topics/export/hypertext/bgf2xhtml.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/btf2btf.xslt
https://github.com/grammarware/slps/blob/master/topics/export/source/btf2source.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/cbgf-split.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/cbgf2cbgf-context.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/cbgf2cbgf2cbgf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/cbgf2cbnf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/cbgf2xbgf-forward.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/cbgf2xbgf-reverse.xslt
https://github.com/grammarware/slps/blob/master/topics/extraction/w3c/cleanup.xslt
https://github.com/grammarware/slps/blob/master/topics/extraction/ecore/ecore2bgf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/edd-export.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/edd2dcg.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/exbgf2xbgf.xslt
https://github.com/grammarware/slps/blob/master/topics/transformation/normalization/subdefs/extract.xslt
https://github.com/grammarware/slps/blob/master/topics/transformation/normalization/subdefs/extract.xslt
https://github.com/grammarware/slps/blob/master/topics/mutation/expose-root/generate.xslt
https://github.com/grammarware/slps/blob/master/topics/transformation/normalization/subdefs/inline.xslt
https://github.com/grammarware/slps/blob/master/topics/transformation/normalization/subdefs/inline.xslt
https://github.com/grammarware/slps/blob/master/topics/extraction/ldf/ldf2bgf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/ldf2tex.xslt
https://github.com/grammarware/slps/blob/master/topics/export/hypertext/ldf2xhtml.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/mathml2tex.xslt
https://github.com/grammarware/slps/blob/master/topics/export/hypertext/mathml2xhtml.xslt
https://github.com/grammarware/slps/blob/master/topics/transformation/normalization/postfix2confix.xslt
https://github.com/grammarware/slps/blob/master/topics/transformation/normalization/postfix2confix.xslt
https://github.com/grammarware/slps/blob/master/topics/extraction/relax/rng2bgf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/rootprods.xslt
https://github.com/grammarware/slps/blob/master/topics/extraction/w3c/spec2bgf.xslt
https://github.com/grammarware/slps/blob/master/topics/extraction/w3c/spec2ldf.xslt
https://github.com/grammarware/slps/blob/master/topics/extraction/txl/txl2bgf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/xbgf2cbgf.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/xbgf2xbnf.xslt
https://github.com/grammarware/slps/blob/master/topics/export/hypertext/xbgf2xhtml.xslt
https://github.com/grammarware/slps/blob/master/shared/xsl/zoo2tex.xslt

3 Metaprogramming Concepts of

XSLT

XSLT [18], eXtensible Stylesheet Language Transfor-
mations, is a widely applicable XML manipulation lan-
guage and as such it provides a wide selection of fea-
tures. We will classify the concepts related to metapro-
gramming in eight categories:

� purely textual output and messages (� 3.1),
� various kinds of templates (� 3.2),
� template calls (� 3.3),
� functions shared with XPath and XQuery (� 3.4),
� conditionals and branching (� 3.5),
� node targeting and context awareness (� 3.6),
� copying and collecting values of nodes (� 3.7) and
� element construction (� 3.8).

3.1 Textual Output

Since some of the scripts in our corpus were related
to pretty-printing, reformatting and benchmarking of
XML structured data, there was quite a few concepts
related to generation of purely textual content:
Terminal symbol (coded 315 times) is a common

concept from grammarware: it means a string literal
that is hard-coded into the grammar of the software
language. The name �terminal� was given thanks to
the fact that in context-free grammars reaching such
a symbol means termination of the derivation process.
We marked only those textual chunks as terminals that
contained at least one proper word.
Non-alphanumeric character (403) is a special

case of a terminal symbol that consists of one or few
non-alphanumeric symbols: mostly quotes and brack-
ets.
Space (44) was also coded separately because of its

prominent occurrence.
Newline (91) was used even more commonly than a

space because it was applicable to both text-targeting
pretty-printers and XML-targeting transformers (in
the latter case, to facilitate debugging).
Message (88) is a special XSLT feature allowing

programs to print something on the screen without
disturbing the data �ow of the mapping � in our cor-
pus it was mostly used for logging.
Error (14) is a pattern that was marked when an

obviously erroneous input was dealt with by either pro-
ducing a corresponding message or just capturing an
otherwise case in a choose construct that had already
covered all necessary sensible cases with when clauses.
Comment (1) is a standard XSLT feature to pro-

vide documentation � it was not used as actively
as it could have been, perhaps because correspond-
ing publications could be considered as proper docu-
mentation for the implemented grammar manipulation

techniques, and the artefacts themselves were not con-
sidered essential.

3.2 Templates and Applications

In XSLT, functions are organised in �templates�: code
fragments that match a speci�ed pattern in the input
and rewrite it to the output pattern which is well-
formed, but may combine both XSLT rewriting ele-
ments and target language elements. Templates can
be also named to be explicitly called later. In total
there were 611 templates identi�ed in the corpus: 534
matched and 77 named. Their application was guided
by 363 apply-templates instances and 428 direct calls
(for the latter see the next subsection).

Universally matching templates (4) were rela-
tively rare � they were matching "*" or some varia-
tion thereof limited to an unsupported namespace.

Root matching (41) � most scripts contained at
least one special template that was meant to match
the root element of the input and direct further
rewriting to its elements. Just one �le contained
two root matches: obviously the grammar extractor
from Ecore metamodels was happy to accept either
ecore:EPackage or xmi:XMI since their content would
have been identically structured anyway.

Match and map to singleton (125) was our code
for templates which output consisted of a single textual
construct or a single node either embracing simple con-
tent or delegating inner elements creation elsewhere.

Match and wrap in terminals (82) was needed
to be coded separately due to its provenance: this pat-
tern occurred often in both pretty-printing scripts and
structural transformation scripts. In the latter case,
wrapping terminals were often quotes.

Match and reapply to all children (10) did not
occur that often, partly due to the fact that it could
have been avoided altogether thanks to XSLT rewrit-
ing semantics.

Other non-parametric templates (368) in-
cluded match-and-rewrite strategies of all kinds.

Other parametric templates (76) covered
named rewritings de�ned once and called from appro-
priate places.

Apply templates to all children (215) is our
code for <xsl:apply-templates select="*"/> or
some variations thereof, it was quite a prominent
way in XSLT to direct input traversals in a low-level
�ne-grained way available only in metaprogramming
frameworks like Nuthatch [2].

Apply templates to one child (106) is the anno-
tation used for more selective template applications.
Due to the nature of XSLT, we can almost never be
sure such constructs apply templates to just one child,
it could be several siblings sharing the same name and

3

other selection criteria.

Apply templates to remote nodes (10) was a
less common way to apply templates to something
stored in a variable or in a parameter; usually as a
means to reinstate normal matching traversals inside
a called template.

Apply templates in the scope (37) � obviously,
an <xsl:apply-templates select="."/> construct
was seen only in a loop inside a selection operator;
otherwise it would cause non-termination. It was used
in cases when a simple XPath expression could not
specify precisely the desired execution path.

3.3 Template Calls

There is more than one way to call a template: we
have identi�ed at least 7.

Empty call (2) is the way to use a static template
that does not need any parameters to run. It was not
very popular.

Call with yourself as a parameter (94) was
quite popular: instead of relying on the scope of the
rewriting being always available through ".", we pro-
vide it explicitly to the called template. This might
seem counter-intuitive, but in fact implicitly enables
several constructs for reliable referencing (since "."

is context-speci�c, it will change its meaning inside
loops).

Call with a child as a parameter (65) is a varia-
tion thereof: instead of providing the entire node, it is
possible to propagate some of its children. In at least
3 cases of 65 coded such calls were associating a list of
children to one template parameter.

Call with a variable as a parameter (42) was
used mostly in the context of a system of several inter-
dependent templates so that one would need to prop-
agate some of its parameters or variables to the next
one in the pipeline.

Recursive call (6) is self-descriptive and refers to a
call to the same template where the call is performed.

Call with versatile parameters (7) was our des-
perate code when all of the above failed to properly
describe a construct. These were the most sophisti-
cated and often involved providing itself, a non-trivial
selection of descendants and a complex expression ex-
tracting nodes of interest from a variable.

3.4 Built-in Functions

XPath, XQuery and XSLT use the same library of
standard functions one can use to operate on XML
nodes. Since SLPS used John Fleck's xsltproc [12]
based on Daniel Veillard's libxslt [31], the selection
of the available functions was limited to XSLT 1.0, and
even then only the following 10 were used:

� concat (10), string concatenation
� contains (6), substring search
� translate (9), map strings on a per-character ba-
sis

� string-length (4), count the number of charac-
ters in a string

� count (22), count the number of nodes in a se-
lected set (see also � 3.5)

� substring (78), substring-after (38) and
substring-before (8), perform string carving,
often used in combinations

� local-name (80), request the tag name of a node
� normalize-space (1), collapse whitespace in a
string

3.5 Branching

Now we will consider 10 concepts related to conditional
rewriting.

Check for existence (222) was the most popular
way to determine the �ow of rewritings. In 3 addi-
tional cases a count was performed and compared to
zero instead � in functional programming this is con-
sidered a malpractice, but XSLT is not truly a lazily
evaluated language.

Check if counter is exactly one (21) is another
relatively popular practice to ensure that a selection
criterion returned one and only one node.

Check if counter is positive (8) is performed
in two similar circumstances: for checking that a se-
lection criterion returned something (count()>0) or
for checking that it returned a sequence of nodes
(count()>1).

Check the local name of a node (162) is the sec-
ond most popular code in this category. XSLT makes
it easy to get a positive match of nodes without know-
ing their exact type (tag), so if treatment of some
nodes diverges, such checks are necessary. For dis-
junctively combined checks we treated them as several
separate ones.

Check for emptiness (6) entails comparing a cal-
culated value to a ''.

Compare with a hard-coded value (122) is a
generalisation of that, covering comparisons to prede-
�ned string and integer values for cases that were not
classi�ed with codes already described above.

Emulate if-then-else (111) with a choose, when
and otherwise is a popular hack. One of the known
shortcomings of XSLT is the lack of two-branched
conditional statement present in many other software
languages: there is a one-branched if that performs
something if a condition holds and does nothing oth-
erwise, and there is a multi-branched choose. Out of
378 uses of choose within our corpus, almost one third
has only two clauses and looks like an if-then-else con-

4

struct. This prevalence is on par with one-branched
if (138 times).

Empty branch (24) is another XML-speci�c id-
iom. In XSLT, one can easily loop through input ele-
ments and in some cases decide to return nothing by
performing <xsl:when test="..." /> � this is re-
alised somewhat awkwardly in proper language work-
benches like Rascal with the classic functional pro-
gramming trick of a �poor man's Maybe� (a list which
is either empty or a singleton) and inlining.

Variable declaration with multiple possible
values (6) is a somewhat uncommon pattern that was
coded because it was not anticipated. Usually a vari-
able is declared with a formula to calculate its value
directly � however, on several occasions there was no
formula, but instead a complex content fragment with
non-trivial branching and fetching.

3.6 Node Targeting

The following 16 concepts that we put into this cate-
gory, deal with ways of accessing target nodes accord-
ing to their context.

Global stylesheet parameters (16) were used to
provide additional inputs (usually timestamps and �le-
names to be used as additional inputs) with --param

and --stringparam options of xsltproc [12].

Accessing external documents (10) through
such parameters is usually done in three steps: a pa-
rameter is declared; an extra variable is declared us-
ing document() function to use that parameter to ac-
cess a document; templates from anywhere within the
stylesheet get access to an extra document (or its part)
through that global variable.

Deep match (33) uses two slashes (//) instead of
one and matches any descendant node instead of im-
mediate children.

Multimatch (40) happens when a template or any
selection construct must match more than one pattern,
they are just joined with a vertical bar: a|b matches
a set of nodes each of which is either a or a b. We
paid a lot of attention to such a feature because its
presence is not guaranteed in other metaprogramming
languages (e.g., Rascal does not have it yet).

Next sibling (2) can be obtained in XSLT by
asking the parent node directly; again, manipulating
parent nodes is not an omnipresent functionality in
metaprogramming frameworks.

Head and tail (50) is an awkwardly looking yet
frequently used pattern in XSLT when something is
applied to the �rst element of a particular selection
set (say, x[1]) and then a clone of the same code is
repeatedly applied to the remainder of the same set
(say, x[position()>1]).

Loop over nodes (150) is a code to cover all kinds

of other for-each loops. Only in 1 case of those the
selection collection was sorted by position in descend-
ing order.

Position (�rst: 3; last: 2; �xed: 6) is handled di-
rectly on several occasions and is used to assign special
behaviour to the �rst or last elements in a collection of
those matching the selection criterion; arbitrary posi-
tions were used in analysis and explicit pretty-printing
or unique IDs.

Child by number (�rst: 84, second: 34, third:
1) can be also used explicitly, as in a[1], a[2], etc.
From the collected numbers we see that the �rst child
pattern is the most common one � sometimes it was
also used as an extra safeguard to ensure that the se-
lection result has exactly one node. In many proper
high level metaprogramming frameworks this scenario
would be improved by assigning names to the �rst and
the second children if their number is known a priori.

Uniqueness (12) checking is implemented in
XSLT 1.0 with a trick well known to any experienced
XSLT programmer, it looks approximately like this:
count(/x/y[not(text()=../preceding-sibling::

y/text())]), sometimes with a deep match, if
appropriate.

Target through local names (26) is a hack with
multiple purposes, its essence is the fact that one uses
a construct like *[local-name()="x"] instead of a
more transparent x pattern. First, it allows to combine
the entire matching logic in one place. Second, it re-
laxes namespace constraints (*:x could work, but will
not match the default namespace). Third, it provides
easy means of traversing a complement (by �ipping
the equality condition to inequality).

3.7 Copies and Values

Metaprogramming of the kind we discuss in this paper,
is founded on three main principles: pattern matching
and rewriting strategies being only the �rst obvious
two of them. The third principle is the ability to reuse
fragments of input in creation of the output. This
section contains several popular concepts concerning
such fragment reuse.

Copy structured node (289) is our code for us-
ing copying instead of taking a value of a node. In
XSLT, value-of can be used on any element, and for
composite elements it produces their purely textual
representation, brutally concatenated if several nodes
match the selection criterion (a rough Rascal equiv-
alent would be string splicing). However, in the real
code this option has never been used: all structured el-
ements were copied (289 times), and only textual ones
were taken by values (537 times). In the remainder
of this section there is no distinction made between
them.

5

Value of the scope node (132) is simply
<xsl:value-of select="."/>.

Value of a local (descendant) node (386) is an
even more popular variant when a child or a descen-
dant node is taken the value of.

Value of a parent (ancestor) node (12) is a
separate case when the value is taken from a parent, a
sibling or any other node that can only be reached by
walking up a tree.

Value of a remote node (146) covers value-ofs
with parameters or variables used in the selection cri-
teria; those were mostly used inside named templates.

Value of a counter (8) codes the usage of count()
on some XPath expression.

Scope shielding (34) happens when we need to
construct a complicated selection expression for which
the current scope should be preserved. We have brie�y
discussed "." being context-speci�c in � 3.3. Con-
sider a situation when we need to look up a per-
son by its ID, it would probably look not unlike
$people/*[id=$id]/name, for which we need to pre-
serve the current ID in scope in a variable in order to be
able to express that that ID which will be local during
the future matching, should be equal to this ID that we
see in scope now. It is a well-known trick, but unlike
others that map to proper language constructs in other
metaprogramming languages, this is an idiosyncratic
consequence of the non-unifying declarative paradigm
with ad-hoc de�ned variables adopted by XSLT.

3.8 Construction

Pure construction of output nodes should also be pos-
sible, and we have �ve concepts belonging to that cat-
egory.

Node construction (454) was coded only for top
elements, otherwise its count would be far into thou-
sands: it covers any inline construction of an output
node in HTML, BGF, LDF or whatever the output
dialect of XML is.

Explicit element construction (4) was used only
on several occasions. It looks like an <xsl:element>

tag and di�ers from normal node construction in the
only way: its tag name can be evaluated on the �y in
a construct of any complexity.

Explicit attribute construction (12) is a similar
feature for constructing attributes for output tags.

In-place evaluation (21) is a shorthand no-
tation for the previous construct. For instance,
x treats link as an
expression to be evaluated (in this case � the
immediate child of this name, �attened to its
text) as if we had written <a> <xsl:attribute

name="href" > <xsl:value-of select="link"/>

</xsl:attribute> <xsl:text>x</xsl:text> .

All such curly bracket uses were coded for in-place
evaluation.

Empty text node (29) produces a textual output
which is empty.

4 Preliminary Analysis

As should be apparent from the data we have collected
and presented in the previous section, most XSLT fea-
tures used in the scope of our metaprogramming activ-
ities, can be mapped directly to any proper metapro-
gramming/language workbench, including Rascal �
the one we intended to use in this project. During
the case studies on the existing XSLT-based grammar
extractors, we found out that the following metapro-
gramming idioms are particularly easy to express in
either XSLT or Rascal:

� matched template and apply-templates � a
pattern-dispatched call of the general transform
function

� named template and call-template � a call to
a dedicated possibly polymorphic function

� choose, when, otherwise, if � pattern-driven
dispatch or explicit matching with := if the con-
ditions are too deep

� for-each � list comprehensions

The following features were harder to match:

� Library functions: luckily, early versions of XSLT
are quite poor with respect to library functions.
However, since XSLT is not by design a language
for metaprogramming, its functions are also sub-
optimal for that domain � the conclusion was
that �nding a close match or writing a wrapper
is almost always less preferable than a manual
rewrite of the fragment in question.

� Variables: XSLT is a declarative language which
allows fake elements that initialise named vari-
ables with certain values to be used later. Despite
being multiparadigmatic, Rascal clearly distin-
guishes between Haskell-like straightforward func-
tion style and Java-like imperative style.

� Multimatches � see � 3.6.
� XPath: XSLT uses XPath expressions both in
matches and access points; Rascal uses di�er-
ent notations for those two paradigms. It al-
ways strictly distinguishes between matches pos-
sibly yielding a set/list or a single element, while
XPath always returns a possibly empty set of
nodes which is incorporated in XSLT by im-
plicit looping in some cases and by more un-
expected workarounds in others. For example,
<xsl:apply-templates select="a"/> is a loop,

6

but <xsl:value-of select="a"/> is a concate-
nation � the latter is almost never the intended
result.

Apart from these issues and some type inference
for the value-ofs, the mapping from XSLT to Rascal
was quite possible to implement to migrate the bulk of
the code and provide the opportunity to �nish the job
manually. The real extent of the work and the limita-
tions of this approach in general are not yet studied in
enough detail.

5 Related Work

Manipulating XML-based encodings has been ac-
knowledged as a metaprogramming activity for more
than a decade [29]. However, XSLT does not have to
be seen as a metaprogramming language � it has been
used for anything from requirements veri�cation [10]
to (XMI-based) model transformation [16] or as a
host language for embedding semantic web query lan-
guages [14]. However, in this paper we view it strictly
as a language that can express structural patterns and
transform them to other structural patterns.

Starting with qualitative data, annotating it with
codes and grouping them into concepts and concepts
in turn into categories, if done properly, is called
grounded theory. It is a relatively new approach to
see in software evolution research, but there has been
some recent work demonstrating its applicability and
usefulness in many topics from interface design [25]
to software architecture [32], as well as in identifying
open problems [24]. Not wishing to join the debate
of what it truly is and what form should it take for
computer science, we did not position this project as
a grounded theory endeavour, but did borrow some of
the terminology whenever it seemed appropriate. In
any case, this paper is de�nitely a report on qualita-
tive data/code analysis.

Migrating code from an untyped language to a
typed language has never been easy but is well-
researched in the form of type inference techniques,
also for declarative languages [1, 27] as well as for the
xmlware technological space [7,23]. The current trend
in type inference is to use as much contextual infor-
mation as possible, mining any data available in the
ecosystem [26] such as test suites [40]. We must con-
fess that the presence of comprehensive test data col-
lections would have made the migration much more
comfortable.

Researching the evolution of a software language
implementation is not a new topic either, it has very
strong representatives [30]. Essentially our situation is
a coupled evolution scenario where the changes in the
metalanguage should co-occur with the changes to the
mappings expressed in it. This is a hard open problem

without a solid convincing solution. We are only aware
of quite modest and therefore realistic migration case
studies from XSLT to XQuery [5] or even within XSLT
from one XSD to another [33]. The current di�erences
among metalanguages and their environments do not
indicate any complexity drops of this problem in the
near future [11].

Alternative routes included using formalisations
of XSLT [6] which is a tempting idea since it can
possibly produce fully automated provably semantic-
preserving metatransformations � if the formalisa-
tions are expressive enough. This direction seems espe-
cially promising due to recent advances in type check-
ing of XSLT transformations [23,28].

This project was essentially code migration from
XSLT [12, 18] to Rascal [20, 21]. Both the source and
the target frameworks were open source, and the sys-
tems were of a quite modest size, so the heaviest prob-
lems in practical code migration projects did not man-
ifest themselves, ultimately enabling the success of this
project.

6 Conclusion

Motivated by a case study of migrating metaprogram-
ming scripts from XSLT to Rascal, we have investi-
gated 10+ KLOC of XSLT stylesheets and presented
several categories of metaprogramming concepts spe-
ci�c to XSLT. This analysis re�ects how XSLT was
used in the metaprogramming context and serves as a
foundation for spotting di�erences and shortcomings
of alternative frameworks.

References

[1] H. Azzoune. Type Inference in Prolog. In E. L.
Lusk and R. A. Overbeek, editors, Proceedings of
the Ninth International Conference on Automated
Deduction, volume 310 of LNCS, pages 258�277.
Springer, 1988.

[2] A. H. Bagge and R. Lämmel. Walk Your Tree Any
Way You Want. In K. Duddy and G. Kappel, ed-
itors, Proceedings of the Sixth International Con-
ference on Theory and Practice of Model Trans-
formations, volume 7909 of LNCS, pages 33�49.
Springer, 2013.

[3] E. T. Barr, M. Harman, Y. Jia, A. Marginean,
and J. Petke. Automated Software Transplan-
tation. In Proceedings of the 24th International
Symposium on Software Testing and Analysis,
pages 257�269. ACM, 2015.

[4] J. Bergeretti and B. Carré. Information-Flow
and Data-Flow Analysis of while-Programs. ACM
ToPLaS, 7(1):37�61, 1985.

7

[5] R. Bettentrupp, S. Groppe, J. Groppe,
S. Böttcher, and L. Gruenwald. A Proto-
type for Translating XSLT into XQuery. In
Y. Manolopoulos, J. Filipe, P. Constantopoulos,
and J. Cordeiro, editors, Proceedings of the
Eighth International Conference on Enterprise
Information Systems: Databases and Information
Systems Integration (ICEIS/DISI), pages 22�29,
2006.

[6] G. J. Bex, S. Maneth, and F. Neven. A Formal
Model for an Expressive Fragment of XSLT. In
Proceedings of the First International Conference
on Computational Logic, volume 1861 of LNCS,
pages 1137�1151. Springer, 2000.

[7] D. Colazzo and C. Sartiani. Precision and Com-
plexity of XQuery Type Inference. In Proceedings
of the 13th International Conference on Prin-
ciples and Practice of Declarative Programming
(PPDP), pages 89�100. ACM, 2011.

[8] J. R. Cordy. The TXL Source Transformation
Language. Science of Computer Programming,
61(3):190�210, 2006.

[9] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM Press/Addison-Wesley, 2000.

[10] A. Durán, A. R. Cortés, R. Corchuelo, and
M. Toro. Supporting Requirements Veri�cation
Using XSLT. In Proceedings of the 10th Anniver-
sary Joint International Requirements Engineer-
ing Conference, pages 165�172. IEEE Computer
Society, 2002.

[11] S. Erdweg, T. van der Storm, M. Völter,
M. Boersma, R. Bosman, W. R. Cook, A. Ger-
ritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P.
Konat, P. J. Molina, M. Palatnik, R. Pohjonen,
E. Schindler, K. Schindler, R. Solmi, V. A. Vergu,
E. Visser, K. van der Vlist, G. Wachsmuth, and
J. van der Woning. The State of the Art in Lan-
guage Workbenches � Conclusions from the Lan-
guage Workbench Challenge. In M. Erwig, R. F.
Paige, and E. Van Wyk, editors, Proceedings of
the Sixth International Conference on Software
Language Engineering, volume 8225 of LNCS,
pages 197�217. Springer, 2013.

[12] J. Fleck. xsltproc � command line XSLT
processor. http://linux.die.net/man/1/

xsltproc, 2001.

[13] T. Gîrba, J.-M. Favre, and S. Ducasse. Us-
ing Meta-Model Transformation to Model Soft-
ware Evolution. Proceedings of the Second In-
ternational Workshop on Metamodels, Schemas

and Grammars for Reverse Engineering (ateM),
137(3):57�64, 2005.

[14] S. Groppe, J. Groppe, V. Linnemann, D. Kuku-
lenz, N. Hoeller, and C. Reinke. Embedding
SPARQL into XQuery/XSLT. In R. L. Wain-
wright and H. Haddad, editors, Proceedings of
the 23rd Symposium on Applied Computing, pages
2271�2278. ACM, 2008.

[15] D. Grune, K. van Reeuwijk, H. E. Bal, C. J. Ja-
cobs, and K. G. Langendoen. Modern Compiler
Design. Springer, 2012.

[16] H. Gustavsson, B. Lings, B. Lundell, A. Mattsson,
and M. Beekveld. Simplifying Maintenance by us-
ing XSLT to Unlock UMLModels in a Distributed
Development Environment. In Proceedings of the
23rd International Conference on Software Main-
tenance, pages 465�468. IEEE, 2007.

[17] Y. Jia and M. Harman. Higher Order Muta-
tion Testing. Information & Software Technology,
51(10):1379�1393, 2009.

[18] M. Kay. XSL Transformations (XSLT) Ver-
sion 2.0. W3C Recommendation, 23 Jan-
uary 2007. http://www.w3.org/TR/2007/

REC-xslt20-20070123.

[19] P. Klint, B. Lisser, and A. van der Ploeg. To-
wards a One-Stop-Shop for Analysis, Transfor-
mation and Visualization of Software. In A. M.
Sloane and U. Aÿmann, editors, Revised Selected
Papers of the Fourth International Conference on
Software Language Engineering, volume 6940 of
LNCS, pages 1�18. Springer, 2011.

[20] P. Klint, T. van der Storm, and J. J. Vinju. EASY
Meta-programming with Rascal. In J. M. Fernan-
des, R. Lämmel, J. Visser, and J. Saraiva, editors,
Revised Papers of the Third International Sum-
mer School on Generative and Transformational
Techniques in Software Engineering, volume 6491
of LNCS, pages 222�289. Springer, 2009.

[21] P. Klint, T. van der Storm, and J. J. Vinju. RAS-
CAL: A Domain Speci�c Language for Source
Code Analysis and Manipulation. In Proceedings
of the Ninth International Working Conference on
Source Code Analysis and Manipulation (SCAM),
pages 168�177. IEEE Computer Society, 2009.

[22] P. Klint, J. J. Vinju, and T. van der Storm. Lan-
guage Design for Meta-programming in the Soft-
ware Composition Domain. In A. Bergel and
J. Fabry, editors, Software Composition, volume
5634 of LNCS, pages 1�4. Springer, 2009.

8

http://linux.die.net/man/1/xsltproc
http://linux.die.net/man/1/xsltproc
http://www.w3.org/TR/2007/REC-xslt20-20070123
http://www.w3.org/TR/2007/REC-xslt20-20070123

[23] M. Lepper and B. Trancón y Widemann. A
Simple and E�cient Step Towards Type-Correct
XSLT Transformations. In Proceedings of the
26th International Conference on Rewriting Tech-
niques and Applications, volume 36 of LIPIcs,
pages 350�364. Schloss Dagstuhl, 2015.

[24] E. Mustonen-Ollila, H. Nyerwanire, and A. Val-
pas. Knowledge Management Problems in Health-
care � A Case Study based on the Grounded
Theory. In Proceedings of the International Con-
ference on Knowledge Management and Informa-
tion Sharing, pages 15�26. SciTePress, 2014.

[25] C. Rivers, J. Calic, and A. Tan. Combining Activ-
ity Theory and Grounded Theory for the Design
of Collaborative Interfaces. In Proceedings of the
First International Conference on Human Cen-
tered Design, volume 5619 of LNCS, pages 312�
321. Springer, 2009.

[26] B. Spasojevic, M. Lungu, and O. Nierstrasz. Min-
ing the Ecosystem to Improve Type Inference
for Dynamically Typed Languages. In Proceed-
ings of the Fourth Symposium on New Ideas in
Programming and Re�ections on Software (On-
ward!), pages 133�142. ACM, 2014.

[27] P. Tarau. On Logic Programming Representa-
tions of λ Terms: de Bruijn Indices, Compres-
sion, Type Inference, Combinatorial Generation,
Normalization. In E. Pontelli and T. C. Son, ed-
itors, Proceedings of the 17th International Sym-
posium on Practical Aspects of Declarative Lan-
guages (PADL), volume 9131 of LNCS, pages
115�131. Springer, 2015.

[28] A. Tozawa. Towards Static Type Checking for
XSLT. In Proceedings of the First Symposium
on Document Engineering (DocEng), pages 18�
27. ACM, 2001.

[29] B. Trancón y Widemann, M. Lepper, and
J. Wieland. Automatic Construction of XML-
Based Tools Seen as Meta-Programming. Auto-
mated Software Engineering, 10(1):23�38, 2003.

[30] L. Tratt. Evolving a DSL Implementation. In
R. Lämmel, J. Visser, and J. Saraiva, editors, Re-
vised Papers of the Second International Summer
School on Generative and Transformational Tech-
niques in Software Engineering, volume 5235 of
LNCS, pages 425�441. Springer, 2007.

[31] D. Veillard. libxslt � library used to do XSL
transformations on XML documents. http://

xmlsoft.org/XSLT/, 2001.

[32] M. Waterman, J. Noble, and G. Allan. How Much
Up-Front? A Grounded Theory of Agile Archi-
tecture. In Proceedings of the 37th International
Conference on Software Engineering (ICSE), Vol-
ume 1, pages 347�357. IEEE, 2015.

[33] Y. Wu and N. Suzuki. Detecting XSLT Rules
A�ected by Schema Evolution. In C. Vanoirbeek
and P. Genevès, editors, Proceedings of the 15th
Symposium on Document Engineering (DocEng),
pages 143�146. ACM, 2015.

[34] V. Zaytsev. Language Evolution, Metasyntacti-
cally. Electronic Communications of the European
Association of Software Science and Technology
(EC-EASST); Bidirectional Transformations, 49,
2012.

[35] V. Zaytsev. Notation-Parametric Grammar Re-
covery. In A. Sloane and S. Andova, editors, Post-
proceedings of the 12th International Workshop on
Language Descriptions, Tools, and Applications
(LDTA 2012). ACM Digital Library, June 2012.

[36] V. Zaytsev. GrammarLab: Foundations for
a Grammar Laboratory, 2013�2015. http://

grammarware.github.io/lab.

[37] V. Zaytsev. Case Studies in Bidirectionalisation.
In Pre-proceedings of the 15th International Sym-
posium on Trends in Functional Programming
(TFP 2014), pages 51�58, May 2014. Extended
Abstract.

[38] V. Zaytsev and A. H. Bagge. Parsing in a Broad
Sense. In J. Dingel, W. Schulte, I. Ramos,
S. Abrahão, and E. Insfrán, editors, Proceed-
ings of the 17th International Conference on
Model Driven Engineering Languages and Sys-
tems (MoDELS), volume 8767 of LNCS, pages
50�67. Springer, 2014.

[39] V. Zaytsev, R. Lämmel, T. van der Storm,
L. Renggli, R. Hahn, and G. Wachsmuth. Soft-
ware Language Processing Suite1, 2008�2014.
http://slps.github.io.

[40] H. Zhu, A. V. Nori, and S. Jagannathan. De-
pendent Array Type Inference from Tests. In
D. D'Souza, A. Lal, and K. G. Larsen, editors,
Proceedings of the 16th International Conference
on Veri�cation, Model Checking and Abstract In-
terpretation (VMCAI), volume 8931 of LNCS,
pages 412�430. Springer, 2015.

1The authors are given according to the list of contributors at
http://github.com/grammarware/slps/graphs/contributors.

9

http://xmlsoft.org/XSLT/
http://xmlsoft.org/XSLT/
http://grammarware.github.io/lab
http://grammarware.github.io/lab
http://slps.github.io
http://github.com/grammarware/slps/graphs/contributors

<xsl:template match="eLiterals">

<bgf:expression>

<selectable>

<selector>

<xsl:value-of select="@name"/>

</selector>

<bgf:expression>

<epsilon/>

</bgf:expression>

</selectable>

</bgf:expression>

</xsl:template>

<xsl:template match="eStructuralFeatures">

<xsl:choose>

<xsl:when test="./@xsi:type='ecore:EReference'">

<xsl:call-template name="mapEReference">

<xsl:with-param name="ref" select="."/>

</xsl:call-template>

</xsl:when>

<xsl:when test="./@xsi:type='ecore:EClass'">

<xsl:call-template name="mapEClass">

<xsl:with-param name="class" select="."/>

</xsl:call-template>

</xsl:when>

<xsl:when test="./@xsi:type='ecore:EAttribute'">

<xsl:call-template name="mapEAttribute">

<xsl:with-param name="attr" select="."/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<terminal>

<xsl:text>!!!</xsl:text>

<xsl:value-of select="./@xsi:type"/>

</terminal>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

(a)

GExpr transform(eLiterals(str name)) = label(name,epsilon());

GExpr transform(n:eStructuralFeatures("ecore:EReference")) = mapEReference(n);

GExpr transform(n:eStructuralFeatures("ecore:EClass")) = mapEClass(n);

GExpr transform(n:eStructuralFeatures("ecore:EAttribute")) = mapEAttribute(n);

default GExpr transform(n:eStructuralFeatures(str xsitype)) = terminal("!!!<xsitype>");

(b)

Figure 1: The same fragment of Ecore to BNF-like Grammar Format mapping in (a) XSLT and (b) Rascal.
Besides the apparent shrink in size and the boost to readability linked to it, the latter fragment is strongly typed
and thus can be automatically validated for its grammatical commitments to both the input and the output.
Technically, the second fragment is still imperfect in the sense that it does not implement namespaces as types
(just as substrings), which leaves a small door for bugs open.

10

