
Reverse Engineering a CSS Coding Conventions Catalogue

Boryana Goncharenko
Universiteit van Amsterdam, The Netherlands;

Amazon, The Netherlands
boryana.goncharenko@gmail.com

Vadim Zaytsev
Universiteit van Amsterdam, The Netherlands;

Raincode, Belgium
vadim@grammarware.net

Abstract
Coding conventions are preferences of a particular program-
ming style, used to preserve code base consistency and main-
tain readability. Many practitioners design and publish their
custom style guides. In this paper we investigate what con-
ventions exist for the Cascading Style Sheets (CSS) lan-
guage. We present a categorised catalogue of the discovered
CSS style guides with examples for each convention. The
catalogue was subsequently used in creating CssCoco [1],
a tool for detecting violations based on the specification of
conventions.

1. Introduction
Coding conventions is a term comprising a range of rules
including indentation, layout, syntactic structure preference
and code (anti)patterns. They shape a specific programming
style in the context of a software language, a project or an or-
ganisation. Code conventions are used to ensure code quality
and consistency, which in turn is known to improve the read-
ability and maintainability of the code [30, 31]. We claim it
to be an important ingredient in software language usability,
since conventions not only demonstrate linguistic idioms,
but also classify them into useful and harmful ones, thus
providing unprecedented insight and empirically obtainable
indication of language features design.

Organisations often design custom style guides that em-
body conventions used in their projects. This practice is well
adopted in the Cascading Style Sheets (CSS) community:
W3C has not published a canonical style guide, so many
practitioners design their own conventions. Typically, such
style guides take the form of natural language descriptions
supported by code examples. This is the case with the style
guides of Google [5], GitHub [14] and WordPress [2].

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

PLATEAU ’16 1 Nov, 2016, Amsterdam, The Netherlands
Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

In this paper we investigate which conventions for CSS
exist and present a catalogue based one the discovered style
guides. We focus on conventions for manually written CSS.
Our way to seek conventions and a summary of findings
is described in § 2. Related work and terminology are dis-
cussed in § 3. In § 4 we present the conventions catalogue.
§ 5 concludes the paper with a short discussion.

2. Research Method
To discover existing CSS code conventions, two searches
with the keywords CSS code conventions were made us-
ing the search engines DuckDuckGo1 and Google Search2.
The first 100 results of each search were analysed, filtering
out conventions referring to CSS “preprocessors” like LESS
or SASS. In case the result contained links to other style
guides, these references were added to the corpus as well.

The process of discovering conventions encountered a
number of issues. Specifically, some of the conventions were
overgeneralised (did not contain sufficient data to be appli-
cable), incorrectly described (conflicting with the examples),
ambiguous (open for interpretation) or underspecified (can
only be inferred from their implicit use in other rules) [1].

As a result of the searches, 28 CSS style guides were
discovered [2–29]. Authorship of these conventions goes
back to CSS professionals, open source communities and
commercial companies. The total number of conventions
in the discovered style guides is 471. However, since style
guides often share the same conventions and even refer to
one another, only 143 of the conventions are unique.

Each convention in the corpus was further categorised
based on the type of constraints it specifies:

Layout category (§ 4.1, 35 conventions) contains rules that
constrain the overall layout of the code, indentation rules,
line splitting, bracket positioning, etc.

Sorting category (§ 4.2, 14 conventions) covers element po-
sitioning conventions: where style sheet elements should
be put, how they should be grouped, sorted, etc.

1 http://duckduckgo.com
2 http://google.com

http://duckduckgo.com
http://google.com

0

5

10

15

20

25

30

35

40

45

50
W

o
rd

p
re

ss

C
SS

 li
n

t

D
ru

p
al

G
o

o
gl

e

M
o

o
d

le

Id
io

m
at

ic
 C

SS

n
o

d
e

w
av

e

C
o

d
eG

u
id

e

M
ed

ia
W

ik
i

Th
in

kU
p

C
SS

gu
id

e
lin

e
s

cb
ra

cc
o

G
it

H
u

b

B
ac

kd
ro

p
C

M
S

C
K

A
N

M
ed

ia
ra

in

To
ll

ss
6

4

Sh
ay

h
o

w
e

p
h

p
ie

d

Li
q

u
id

C
o

n
tr

ac
t

Is
o

b
ar

M
o

zi
lla

R
ea

ld
ea

l

M
o

rs
h

ed

C
SS

 W
iz

ar
d

ry

A
p

p
p

ie

O
ri

o
n

Figure 1. Lighter to darker: layout, syntax, style per guide

Syntax Preference category (§ 4.3, 43 conventions) com-
prises conventions that express preference of a particular
syntax, not aiming at ensuring CSS validity, but affecting
the choice among syntactic alternatives: using lowercase
or camelCase, single quotes or double quotes, etc.

Programming Style category (§ 4.4, 51 conventions) con-
sists of conventions that put constraints on how CSS con-
structs are used to achieve feasible goals, they express
good and bad practices in the CSS domain and are used
to improve maintenance and performance, or to avoid
known issues.

Figure 1 presents the distribution of the types of conven-
tions among the discovered style guides.

Most of the conventions appeared in multiple style guides.
For example, the guideline put one space after a colon is
present in 20 out of the 28 style guides. Similarly, 19 of
the guides required CSS developers to use the semicolon at
the end of declarations, even though grammatically such a
semicolon is optional.

The catalogue presented in this document was instrumen-
tal in creating CssCoco3, a tool for detecting convention vi-
olations based on a specification of a particular selection
of conventions chosen to be adhered to. The design of this
tool relies on an abstract syntax of a domain-specific lan-
guage for expressing such conventions, which closely fol-
lows the domain modelling ontology, which in turn emerged
in analysing the catalogue we present in § 4.

3. Related work
When creating a catalogue of coding conventions, the ob-
vious body of related work to look at, concerns design pat-
terns [32–34]. The most crucial difference is that at the em-
pirical/statistical investigation phase we are not interested in
the rationales — if someone wants to detect violations of a
particular convention, we must accommodate that desire be-
fore asking for their reasons. We are not the first to start ca-

3 http://pypi.python.org/pypi?:action=display&name=

csscoco

taloguing pattern-like entities for something else than code
or architecture — for instance, there was some prior work
on metrics [35] and visualisations [36]. Recently Cutumisu
et al. have proposed four metrics for assessing quality of
such pattern catalogues: usage, coverage, utility and preci-
sion [37], but their evaluation procedure relies on substantial
existing use of the catalogue, so for us it remains distant fu-
ture work.

Not all useful catalogues are long lists with unstructured
relations like ours: for example, the data structure catalogue
by Rüping et al. [38] is a one-page hierarchy graph linking
classes (lists, sets, bags, queues, etc). Other algorithmically-
driven catalogues seem to fall into the same category, such
as the cyber-foraging tactics catalogue [39].

A convention catalogue is only one step away from bad
smells catalogues, which are plentiful, covering not just
source code, but also software architecture [40], usability
traits [41], language design [42], spreadsheets [43], etc.
There also exists some (preliminary) work on investigating
smells in style sheets [44] with some smells like undoing
style receiving more attention [45]. In this aspect our con-
tribution can be seen in broadening the scope and inverting
the question: a smell is something already present in soft-
ware artefacts being discovered; a convention is a set goal
for conformance.

In the field of requirements engineering, catalogues are
a commonly used methodology, up to the point of having a
multi-phase process around their engineering [46,47]: inves-
tigation (of state of the art), experimental research (using the
catalogue to develop new systems), iterative evolution (of
the catalogue following discovered shortcomings and emer-
gent technologies) and collaborative evolution (with refine-
ment based on experiences of versatile clientele). We con-
sider this paper as a comprehensive report on the first stage;
CssCoco [1] belongs to the second one, we hope both of
them serving as stepping stones to proceed to the later ones.

4. Convention catalogue
This section contains the results of our domain analysis,
which is also available in more details online at http:

//github.com/boryanagoncharenko/CssCoco/blob/

master/analysis.md. For this paper we have focused
mostly on providing an overview and heavily annotating
it with illustrative examples.

4.1 Layout and comments
Add /* LTR */ to each use of left or right [4]

X float: right; /* LTR */

× float: right;

Add /* LTR */ to each use of direction:ltr [4]
X direction: ltr; /* LTR */

× direction: ltr;

Use 4 (or 2) spaces for indentation [2, 4–6, 9–11, 13, 14, 16–19, 21–23]
× no indentation
× indentation with tabs
× indentation with the “wrong” number of spaces
? multiple properties in one line

http://pypi.python.org/pypi?:action=display&name=csscoco
http://pypi.python.org/pypi?:action=display&name=csscoco
http://github.com/boryanagoncharenko/CssCoco/blob/master/analysis.md
http://github.com/boryanagoncharenko/CssCoco/blob/master/analysis.md
http://github.com/boryanagoncharenko/CssCoco/blob/master/analysis.md

Indent declarations once [2, 4, 7, 10–12, 15]
× no indentation
× some declarations indented twice
X contents of a @media rule can be indented twice
X comments can have any indentation

Indent all contents of a block [5]
X everything inside each block is visually indented
× no indentation
× inconsistent indentation

Closing curly bracket of a block must be vertically aligned with the
selector of the rule [2, 4, 6, 7, 10, 13, 17, 19, 22]

× inconsistent bracket positioning
× closing bracket aligned with an opening curly
× closing bracket aligned with the last property

Vertically align vendor properties [6, 10, 12, 13, 19]
X .foo {

-webkit-border-radius: 3px;

-moz-border-radius: 3px;

border-radius: 3px;

}

× .foo {

-webkit-border-radius: 3px;

-moz-border-radius: 3px;

border-radius: 3px;

}

Vertically align values of related properties [12]
X .bar {

margin-right: -10px;

margin-left: -10px;

padding-right: -10px;

padding-left: 10px;

}

× .bar {

margin-right: -10px;

margin-left: -10px;

padding-right: -10px;

padding-left: 10px;

}

Indent multiline selectors [25]
X .class1,

.class2,

.class3,

.class4 { font-size: 80%; }

.otherClass { font-size: 2em; }

Rulesets in @media should be indented [2, 4, 15]
× no indentation

Comments should be indented with the thing they describe [4, 6, 15]
X /* a fix */

color: red !important;

× /* a fix */

color: red !important;

Place comments on a new line [7, 22]
X /* a fix */

color: red !important;

× /* a fix */ color: red !important;

Add comments after a space after the last ; [8]
X height: 100%;

margin-bottom: 1px; /* scrollbars! */

Add one blank line between adjacent rulesets [2, 5–7, 10–14, 17, 21]
× no blank lines between rulesets
× two or more blank lines

Single-line rules may take adjacent lines [7, 12, 15]
× multiple single-line rules per line
? one line between single-line rulesets
× two or more lines between rulesets

Values should be on same line as names [7, 12]
X margin: 0px 20px 0px 10px;

× margin: 0px

20px

0px

10px;

Values should not appear on one line [8]
× margin: 0px 20px 0px 10px;

X margin: 0px

20px

0px

10px;

No space before colons [4, 10, 15, 17, 18, 27]
X color: red;

× color : red;

Put one space after colons [2, 4–7, 9–12, 14–18, 20–22, 26]
× color: red;

X color: red;

× color:red;

Put no spaces after colons [27]
X color:red;

× color: red;

Put one space between the last selector and the block [2,4,5,7,9,11–14,
16, 17, 19–22]

× a{color:blue;}

X a {color:blue;}

× a {color:blue;}

Opening brace must be on the same line as the last selector [10, 11, 17,
18, 22, 26]

X a{color:blue;}

X a {color:blue;}

× a

{color:blue;}

Put the first declaration on a newline after the opening curly brace
[11, 12, 17, 18]

× a{color:blue;}

× a {color:blue;}

X a

{color:blue;}

× a

{color:blue;

}

Require newline before a declaration [8]
× multiple declarations per line

Put exactly one selector per line [2, 4–7, 9, 10, 12–14, 17, 18]
X h1 {...}

× h1, h2 {...}

X h1,

h2 {...}

× h1,

h2 {...}

Put every declaration on a new line [2, 4, 6, 7, 9–14, 16, 18, 19, 22]
X margin-left:10px;

margin-right:10px;

× margin-left:10px; margin-right:10px;

Closing brace on a new line [4, 9, 11, 12, 14, 18]
X a {

color: blue;

}

× a {

color: blue;}

? a { color: blue; }

Short one-liners are allowed [7, 9, 12–14, 25]
X a { color: blue; }

No space after the (of functions [2, 4, 15]
X rgb(100, 100, 100);

× rgb(100, 100, 100);

No space before the) of functions [2, 4, 15]
X rgb(100, 100, 100);

× rgb(100, 100, 100);

Use spaces in CSV lists [2, 4, 7, 9, 11, 15, 19]

X rgb(100, 100, 100);

× rgb(100,100,100);

Do not use spaces in CSV lists [9]
× rgb(100, 100, 100);

X rgb(100,100,100);

Use newlines to break long values [2, 4]
X esp. applicable to box-shadow, text-shadow, ...

One space separates media feature & value [4]
× @media screen and (min-width:10rem)

X @media screen and (min-width: 10rem)

× @media screen and (min-width: 10rem)

All files should end with a single blank line [4]

4.2 Positioning and sorting
Style sheet starts with comment [2, 8, 12, 13, 17, 27]

X the first element of the file is a comment
Group related properties [2, 4, 5, 7, 13, 15]

X .bar {

margin: 15px;

padding: 5px;

color: red;

font-weight: bolder; }

× .bar {

margin: 15px;

color: red;

padding: 5px;

font-weight: bolder; }

In multiselectors, order the selectors by type: HTML, HTML group-
ings, classes, IDs [8]

X p, div span, .c, #t {color:red;}

Order dimensions from outer to inner [8]
X padding:0;width:5px;height:5px;margin:0

X padding:0;height:5px;width:5px;margin:0

Order alignments from outer to inner [8]
X position:absolute; float:none;

overflow:auto; vertical-align:text-top;

text-align:center; direction:ltr;

text-indent:1em; white-space:nowrap;

Sort declarations by alphabet [5, 9, 12, 14, 17, 18]
X vendor-specific prefixes can be ignored for sorting

Sort declarations by alphabet within group [4]
X typical groups: display, positioning, box model, colours, typography,

other
Sort vendor-prefixed properties by alphabet [5]

X obviously applies when several are present
Order vendor-prefixed values by version [10]

X /* Safari 4, Chrome 2, iOS 2 */

background-image: -webkit-gradient(. . .);
/* Safari 5.1+, Chrome 10+, iOS 5 */

background-image:

-webkit-linear-gradient(...);

Use TRBL order for boxing [2, 4, 5, 13]
X shorthands of margin and padding use top-right-bottom-left order,

and it should be used in freehand declarations as well.
Use TL/TR/BR/BL for corner specifiers [2]

X especially applicable to border-radius*-*

Keep @media rules at the bottom of the sheet [2]
X it is also acceptable to not have at-rules

Disallow duplicate properties (rule 1) [48]
× border: 1px solid black;

border: 1px solid black;

Disallow duplicate properties (rule 2) [48]
× border: 1px solid black;

border: 1px solid red;

4.3 Syntax
Put a semicolon at the end of each declaration [2, 4–7, 9–13, 15, 18–21,
24, 26]

X .c { color: red;font-size:larger;}

× .c { color: red;font-size:larger}

Use em instead of px [6, 21]
X font-size: 12px;

× font-size: 1em;

Use px instead of pt [8]
X font-size: 12pt;

× font-size: 12pt;

No @charset statements in external sheets [4]
× @charset "UTF-8";

Omit the protocol from embedded resources [5]
X url(//www.google.com/images/example)

× url(http://www.google.com/images/example)

Disallow empty rules [49]
× .myclass { }

× .myclass { /* Nothing to see here */ }

Disallow the star hack [50]
× *width: 100px;

Disallow the underscore hack [50]
× _width: 100px;

Strings must use double quotes [2, 4, 7, 11, 15, 16]
X font-family: "Arial Black"

× font-family: 'Arial Black'

Use single quotes for attrs [2, 4, 5, 7, 9, 15, 19]
× span[class=example] {...}

X span[class='example'] {...}

× span[class="example"] {...}

Use double quotation marks for charsets [5]
X @charset "UTF-8";

× @charset 'UTF-8';

Do not use pt or rem [6]
× font-size: 10pt;

X font-size: 1em;

× font-size: 1.5rem;

Use single quotes in values [5, 11]
X font-family: 'Verdana';

× font-family: "Verdana";

Double quote font names with spaces [2, 8]
× font-family: Arial Black;

X font-family: "Arial Black";

× font-family: 'Arial Black';

Do not put quotes in URIs [4, 5, 10, 16]
X @import url(maia.css);

× @import url('maia.css');

× @import url("maia.css");

Use single quotes in URIs [8]
× @import url(vala.css);

X @import url('vala.css');

× @import url("vala.css");

Use hex or rgba() for colors [2, 14]
X color: #F00;

× color: red;

X color: rgba(50, 100, 150, 1.0);

× color: rgb(50, 100, 150);

× color: hsl(10, 100, 250);

× color: hsla(10, 100, 250, 0.5);

Use rgba only when opacity is needed [2, 14]
X background-color: rgba(255, 0, 0, 0.5);

× background-color: rgba(255, 0, 0, 1);

X background-color: rgb(255, 0, 0);

Use short hexadecimal values [2, 4, 5, 7, 16, 20]
X color: #E9E9E9;

× color: #99EE11;

X color: #111;

× color: #111111;

No units for zeros [2, 4–7, 9, 11, 14, 15, 20, 50]
X .box { margin-top: 0; }

× .box { margin-top: 0px; }

× .box { margin-top: 0%; }

Use px for font-size [14, 23]
X font-size: 12pt;

× font-size: 1.5em;

× font-size: 2.54rem;

× font-size: 3.14cm;

Line height should not use units [2, 14, 23]
X line-length: 1;

× line-length: 1.5pt;

× line-length: 0.01cm;

Use a leading zero for decimal values [2, 5, 9]
X .box { font-size: 0.8em; }

× .box { font-size: .8em; }

X p { text-indent: -0.8em; }

× p { text-indent: -.8em; }

Values in media queries should use rem [4]
X @media screen and (min-width: 20rem)

× @media screen and (min-width: 450px)

Presentation words in selectors [19, 21, 23, 26, 28]
× .blue { ... }

× #text-gray { ... }

× .light-box { ... }

Do not abbreviate [6, 21, 28]
X .production { ... }

× .prod { ... }

X #text { ... }

× #txt { ... }

ID and class names must be dash-separated lowercase [2, 5, 6, 9–12, 16,
19, 21, 22, 28]

X .prod { ... }

× .Prod { ... }

X #text-case { ... }

× #textCase { ... }

ID/class names must be lowercase [5, 11, 13, 21, 26]
X .prodrule { ... }

× .ProdRule { ... }

X #textcase { ... }

× #text-case { ... }

Properties should be lowercase [2, 5, 6]
X color: red;

× Color: red;

X margin: 10px;

× MARGIN: 10px;

X -MOZ-border-radius: 5px;

HTML elements are lowercase [2, 5–7, 11, 13]
X h1 { ... };

× H1 { ... };

Attributes are lowercase [2, 5, 7, 13]
X div[prop] { ... };

× div[PROP] { ... };

Attributes values are lowercase [2, 5, 7, 13]
X img[alt="icon"] { ... };

× img[alt="ICON"] { ... };

Non-string values must be lowercase [2, 5, 7, 13]
X color: red;

× color: RED;

X margin-top: 3px;

× margin-top: 3PX;

X font-family: "Courier New", courier;

Hexadecimals are lowercase [4, 6, 7, 9, 15, 19, 20]
X color: #fff;

× color: #FFF;

All except comments should be lowercase [8]
X color: #fff;

× color: #FFF;

X .prodrule[attr] { ... }

× .ProdRule[ATTR] { ... }

X color: red;

× color: RED;

X font-family: "courier new", courier;

× font-family: "Courier New", courier;

ID/class names must be camelCase [11, 23, 25]
X .prodRule { ... }

× .Prod-rule { ... }

X #textCase { ... }

× #TEXTCASE { ... }

Avoid using attributes in selector names [25]
× .red { color: red; }

× .center { text-align: center; }

Forbid specific words in ID and class names [25]
× .box-top { color: red; }

× .head-menu { color: red; }

× .left-notice { color: red; }

IDs & classes should be shorter than 20 chars [8]
× .table-of-contents-and-figures {...}

Almost all colors should be in hex [8]
X color: white;

X color: black;

X color: transparent;

× color: red;

X color: #ffdec9;

A class and an ID cannot share a name [8]
× no document should contain both .x and #x

Multiselectors must have 4− selectors [10]
X h1 { color:red;}

X h1,h2 { color:red;}

X h1,h2,h3 { color:red;}

X h1,h2,h3,h4 { color:red;}

× h1,h2,h3,h4,h5 { color:red;}

× h1,h2,h3,h4,h5,h6 { color:red;}

Selectors must have 4− simple selectors [10]
X h1 { color:red;}

X div h1 { color:red;}

X div.main h1 { color:red;}

X div.main h1.cool { color:red;}

× div.main[style] h1.cool { color:red;}

× div.main[style] h1.cool #a { color:red;}

4.4 Style
Avoid using z-indexes when possible [10]

× z-index: 100;

Avoid using !important [10, 18]
× color: red !important;

Do not use ID selectors [3, 6, 25, 27, 29]
× #header a {...}

Disallow @import [9, 23, 25, 51]
× @import url(foo.css);

Zero or one ID selectors per rule declaration [14]
× #header .search #quicksearch { ... }

? #header, #footer { ... }

Use px units as a safe fallback for rem units [4]
X font-size: 24px; font-size: 1.5rem;

× font-size: 1.5rem;

Beware of box model size (rule 1) [3]
X width: 100px; border: 1px;

box-sizing: border-box;

× width: 100px; border: 1px;

× width: 100px; padding: 1px;

Beware of box model size (rule 2) [3]
X height: 100px; border: 1px;

box-sizing: border-box;

× height: 100px; border: 1px;

× height: 100px; padding: 1px;

Require properties for display (rule 1) [52]
× display:inline; width:25px;

× display:inline; height:25px;

× display:inline; margin:10px;

× display:inline; float:left;

Require properties for display (rule 2) [52]
× display:inline-block; float:left;

Require properties for display (rule 3) [52]
× display:block;vertical-align:text-top;

Require properties for display (rule 4) [52]
× display: table-cell; margin: 10px;

Disallow adjoining classes [50]
X .foo .bar {color: red;}

× .foo.bar {color: red;}

Disallow the box-sizing property [50]
× .mybox {box-sizing: border-box;}

Require compatible vendor prefixes [4, 6, 7, 50]
X -moz-transform: translate(50px, 100px);

-o-transform: translate(50px, 100px);

-ms-transform: translate(50px, 100px);

transform: translate(50px, 100px);

× transform: translate(50px, 100px);

Disallow negative indent [50]
X direction:rtl; text-indent:-9em;

× text-indent:-9em;

Require standard property (no prefix) [6, 50]
X -moz-transform: translate(50px, 100px);

-o-transform: translate(50px, 100px);

-ms-transform: translate(50px, 100px);

transform: translate(50px, 100px);

× -moz-transform: translate(50px, 100px);

Require a fallback color [6, 50]
X color:gray; color:rgba(100,200,100,0.5);

× color:rgba(100,200,100,0.5);

Bulletproof font face [23, 50]
× @font-face {src: url('webfont.eot');}

Do not use too many web fonts [50]
× more than five @font-face declarations

Disallow regex-looking selectors [9, 50]
X .mybox[class]{ color: red; }

X .mybox[class=xxx]{ color: red; }

× .mybox[class~=xxx]{ color: red; }

× .mybox[class^=xxx]{ color: red; }

× .mybox[class|=xxx]{ color: red; }

× .mybox[class$=xxx]{ color: red; }

× .mybox[class*=xxx]{ color: red; }

Disallow the universal selector [23, 50]
× * { color: red; }

X .selected * a { color: red; }

× .selected * { color: red; }

Disallow unqualified attribute selectors [50]
× .myclass[type=text] { color: red; }

X .selected [type=text] a { color: red; }

× .selected [type=text] { color: red; }

Disallow overqualification [2, 9, 16, 23, 24, 29, 50]
X p.active {...} li.active {...}

× li.active {...}

No combos of ID/classes with types [2, 5, 6, 24]
X .error {}

× div.error {}

X #example {}

× ul#example {}

Disallow duplicate background images [50]
× .heart {background: url(sprite.png)

0 0 no-repeat;}

.task {background: url(sprite.png)

0 0 no-repeat;}

Disallow too many floats [50]
× more than 10 declarations with float property

Do not use too many font size declarations [50]
× more than 10 declarations of font-size

Disallow outline:none (rule 1) [50]

X a:focus { outline:none; }

× a { outline:none; }

X a:focus { outline: 0; }

× a { outline: 0; }4

Disallow outline:none (rule 2) [50]
X a:focus { outline:none; }

× a { outline:none; }

X a:focus { outline: 0; }

× a { outline: 0; }

× a:focus p { outline: 0; }

× a:focus, p { outline: 0; }

Disallow qualified headings [50]
X h3 {font-weight: normal;}

× .box h3 {font-weight: normal;}

Headings should only be defined once [50]
X h3 {font-weight: normal;}

× h3 {font-weight: normal;}

.box h3 {font-weight: bold;}

X h3 {font-weight: normal;}

h3:hover {font-weight: bold;}

Require fallback on gradient backgrounds [10]
X background-color:#555;

background-image:

linear-gradient(top,#111,#999);

× background-image:

linear-gradient(top,#111,#999);

Use the most specific category possible [9, 24]
× .item[folder] > treerow > treecell {...}

Avoid the descendant selector [2, 24]
X treehead > treerow > treecell {...}

× treehead treerow treecell {...}

No child selector with tag category rules [24]
× treehead > treerow > treecell {...}

Question all usages of the child selector [2, 24]
× div > .sect {...}

Avoid vendor-specificity unless necessary [24]
× -webkit-border-radius: 1px;

× -moz-border-radius: 10px;

No shorthand properties but border [8, 9, 21, 22]
X border: 1px solid black;

× background: red url(bg.jpg) no-repeat;

× font: 15px arial, sans-serif;

× list-style: square outside;

× margin: 2cm 3cm 4cm 5cm;

× padding: 2cm 3cm 4cm 5cm;

× transition: transition: width 2s;

No shorthand properties except background [8]
× border: 1px solid black;

X background: red url(bg.jpg) no-repeat;

× font: 15px arial, sans-serif;

× list-style: square outside;

× margin: 2cm 3cm 4cm 5cm;

× padding: 2cm 3cm 4cm 5cm;

× transition: transition: width 2s;

No shorthand properties except list-style [8]
× border: 1px solid black;

× background: red url(bg.jpg) no-repeat;

× font: 15px arial, sans-serif;

X list-style: square url(sq.png);

× margin: 2cm 3cm 4cm 5cm;

× padding: 2cm 3cm 4cm 5cm;

× transition: transition: width 2s;

Use shorthand margin [2, 5, 6, 16, 20, 50]

4 Note that the implementation provided by CSS Lint takes into considera-
tion the presence of the :focus pseudo selector anywhere in the selector.
Thus, a rule a:focus p { outline:0; } does not yield a warning, and
neither does a:focus, p { outline:0; }, which is obviously wrong,
hence the following rule.

X margin: 10px 15px 25px 15px;

× margin-top: 10px; margin-bottom: 25px;

margin-left: 15px; margin-right: 15px;

Use shorthand padding [2, 5, 6, 16, 20, 50]
X padding: 1px 2px 3px 5px;

× padding-top: 1px; padding-bottom: 3px;

padding-left: 2px; padding-right: 5px;

Use shorthand border [2, 5, 6, 16, 20]
X border: 1px 2px 3px 5px solid black;

× border-top: 1px; border-bottom: 3px;

border-left: 2px; border-right: 5px;

border-color:red; border-style:solid;

Use the shorthand font property [2, 5, 6, 16, 20]
X .x {font: Fantasy 9em;}

× .x{font-size:9em; font-family:Fantasy;}

Use the list-style shorthand [2, 5, 6, 16, 20]
X ul { list-style: square inside; }

× ul { list-style-type: square;

list-style-position: inside; }

No js- prefixed names in CSS files [9, 14]
X The js- prefix is exclusively for JS files
X Use the is- prefix for CSS/JS shared state rules

Forbid using border to set the border color [8]
× border: 5px solid red;

Forbid using background to set the color [8]
× background: red url(bg.jpg) no-repeat;

Always set full border value [8]
X border: 1px solid black;

× border: 1px;

Shorthands are for when all sides are equal [8]
X padding: 0px;

× padding: 1px 0px 2px 0px;

? padding: 2px 5px;

5. Conclusion
Practitioners often design and publish custom CSS code
conventions that they use in a specific context. In this paper
we have found what code conventions for CSS exist and
presented a catalogue of the discovered style guides. To find
existing code conventions, we used two search engines and
analysed the first 100 results of each search. As a result, we
discovered 28 style guides containing 471 conventions of
which 143 conventions are unique — these were presented
in § 4 in the form of positive and negative examples as well
as sources where a detailed description and rationale can be
found. We also maintain an online version of the catalogue,
where each entry is defined and explained, for example:
Description: Disallow @import.
Sources: CSS Lint [51], Real Deal [25], Isobar [23], Code
Guide [9].
Violations: For performance reasons, the usage of
@import should be avoided. The following pattern is con-
sidered a violation: @import url(foo.css);

Actions: Find usage of @import statements
Our process of eliminating redundancies was very straight-

forward and does not merit any specific description like done
in more elaborate projects [46] — this simplicity was mainly
due to the simplicity of CSS. We have constructed the cata-
logue of CSS coding conventions as a part of domain analy-
sis. Namely, it was a great help in formulating the ontology
of the domain of detecting violations of CSS coding con-

ventions. We have evaluated the result by developing a tool
for detecting such violations [1]. However, we claim that
the catalogue is a useful artefact that enables additional re-
search opportunities. In the future, by combining it with
mainstream repository mining techniques, we can answer
questions like the following ones:

� How often are such conventions adhered to?

� How soon after the start of the project are they typically
defined?

� Do convention respecting developers get fewer merge
conflicts than unconventional ones?

� What are the sentiments of developers towards the con-
ventions?

� Are changes in the base language desirable to build the
conventions in?

� Can bulk automation of refactorings that enforce adher-
ence to conventions make a useful and appreciated addi-
tion to the web developing ecosystem?

We hope to have given some ground on which research
questions like these can base their answers. The next steps,
as described earlier, should involve incremental improve-
ments of the catalogue towards completeness and coverage
of the domain based on creating new tools with it and per-
forming appropriate experiments.

References
[1] Boryana Goncharenko and Vadim Zaytsev. Language Design

and Implementation for the Domain of Coding Conventions.
Submitted to the 9th International Conference on Software
Language Engineering (SLE), pending notification, 2016.

[2] Wordpress. CSS Coding Standards.

[3] Nicholas C. Zakas. Disallow IDs in selectors.

[4] Drupal. CSS coding standards.

[5] Elliot Glaysher. HTML/CSS Style Guide.

[6] Moodle. CSS coding style.

[7] Nicolas Gallagher. Principles of writing consistent, idiomatic
CSS.

[8] Michel Bagnol. CSS Coding Style Conventions, 2009.

[9] Mark Otto. Code Guide.

[10] MediaWiki. Manual:Coding conventions/CSS.

[11] John Catterfeld. Code Style Guide: CSS.

[12] Harry Roberts. css {guide:lines;}.

[13] Chris Bracco. CSS Conventions, 2015.

[14] CSS team at GitHub. Code Guidelines.

[15] Backdrop CMS API. CSS Coding Standards.

[16] CKAN. CSS coding standards, 2013.

[17] Tyler Nielsen. Coding standards: HTML/CSS, 2013.

https://make.wordpress.org/core/handbook/coding-standards/css/
https://github.com/CSSLint/csslint/wiki/Disallow-IDs-in-selectors
https://www.drupal.org/node/1886770
https://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml
https://docs.moodle.org/dev/CSS_coding_style
https://github.com/necolas/idiomatic-css
https://github.com/necolas/idiomatic-css
http://ovh.nodewave.com/documents/coding-guidelines/css/export/css-coding-style-conventions--standards-guidelines-rules-v1.3.pdf
http://codeguide.co/
https://www.mediawiki.org/wiki/Manual:Coding_conventions/CSS
https://github.com/ThinkUpLLC/ThinkUp/wiki/Code-Style-Guide:-CSS
http://cssguidelin.es/#introduction
https://github.com/cbracco/css-conventions
http://primercss.io/guidelines/#css
https://api.backdropcms.org/css-standards
http://docs.ckan.org/en/latest/contributing/css.html
http://standards.mediarain.com/html-css

[18] Benjamin Toll. Code Conventions for Cascading Style
Sheets.

[19] Simon Sheppard. CSS Naming convention.

[20] Shay Howe. Writing Your Best Code, 2015.

[21] Stoyan Stefanov. CSS coding conventions, 2005.

[22] AlexMA. CSS Coding Conventions.

[23] Isobar. Front-end Code Standards.

[24] David Hyatt. Guidelines for efficient CSS, 2000.

[25] Realdeal. CSS Naming Conventions and Coding Style, 2008.

[26] Morshed Alam. CSS coding guidelines/conventions, 2010.

[27] Harry Roberts. My HTML/CSS coding style.

[28] Apppie. Naming Convention.

[29] Mark Macdonald et al. Orion Coding conventions: CSS,
2014.

[30] Raymond P. L. Buse and Westley R. Weimer. Learning a Met-
ric for Code Readability. IEEE Transactions on Software En-
gineering, 36(4):546–558, July 2010. doi:10.1109/TSE.

2009.70.

[31] Taek Lee, Jung Been Lee, and Hoh Peter In. A study of
different coding styles affecting code readability. Interna-
tional Journal of Software Engineering and Its Applications,
7(5):413–422, 2013.

[32] Walter F. Tichy. A Catalogue of General-Purpose Software
Design Patterns. In TOOLS USA, pages 330–339. IEEE CS,
1997. doi:10.1109/TOOLS.1997.654742.

[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[34] Martin Fowler. Patterns of Enterprise Application Architec-
ture. Addison-Wesley Professional, 2002.

[35] Xavier Franch and Gemma Grau. Towards a Catalogue of
Patterns for Defining Metrics over i*Models. In CAiSE,
volume 5074 of LNCS, pages 197–212. Springer, 2008. doi:
10.1007/978-3-540-69534-9_16.

[36] Chris Parnin, Carsten Görg, and Ogechi Nnadi. A Cata-
logue of Lightweight Visualizations to Support Code Smell
Inspection. In SOFTVIS, pages 77–86. ACM, 2008. doi:

10.1145/1409720.1409733.

[37] Maria Cutumisu, Curtis Onuczko, Duane Szafron, Jonathan
Schaeffer, Matthew McNaughton, Thomas Roy, Jeff Siegel,
and Mike Carbonaro. Evaluating Pattern Catalogs: The Com-
puter Games Experience. In Proceedings of the 28th Interna-
tional Conference on Software Engineering, pages 132–141.
ACM, 2006. doi:10.1145/1134305.

[38] Andreas Rüping, Franz Weber, and Walter Zimmer. Demon-
strating Coherent Design: A Data Structure Catalogue. In
TOOLS USA, pages 363–375. Prentice Hall, 1993.

[39] Grace A. Lewis and Patricia Lago. A Catalog of Archi-
tectural Tactics for Cyber-Foraging. In Proceedings of the
11th International Conference on Quality of Software Archi-
tectures (QoSA), pages 53–62. ACM, 2015. doi:10.1145/

2737182.2737188.

[40] Joshua Garcia, Daniel Popescu, George Edwards, and Ne-
nad Medvidović. Toward a Catalogue of Architectural Bad
Smells. In Proceedings of the Fifth International Confer-
ence on Quality of Software Architectures: Architectures
for Adaptive Software Systems (QoSA), volume 5581 of
LNCS, pages 146–162. Springer, 2009. doi:10.1007/

978-3-642-02351-4_10.

[41] Diogo Almeida, José Creissac Campos, João Saraiva, and
João Carlos Silva. Towards a Catalog of Usability Smells. In
SAC, pages 175–181. ACM, 2015. doi:10.1145/2695664.
2695670.

[42] Soroosh Nalchigar, Rick Salay, and Marsha Chechik. To-
wards a Catalog of Non-Functional Requirements in Model
Transformation Languages. In AMT, volume 1077 of CEUR,
pages 72–81. CEUR-WS.org, 2013.

[43] Rui Abreu, Jácome Cunha, João Paulo Fernandes, Pedro Mar-
tins, Alexandre Perez, and João Saraiva. Smelling Faults in
Spreadsheets. In Proceedings of the 30th International Con-
ference on Software Maintenance and Evolution, pages 111–
120. IEEE, 2014. doi:10.1109/ICSME.2014.33.

[44] Golnaz Gharachorlu. Code smells in cascading style sheets:
An empirical study and a predictive model. Master’s thesis,
University of British Columbia, Canada, 2014.

[45] Leonard Punt, Sjoerd Visscher, and Vadim Zaytsev. The
A?B*A Pattern: Undoing Style in CSS and Refactoring Op-
portunities it Presents. In 32nd International Conference
on Software Maintenance and Evolution (ICSME), 2016. In
print.

[46] Samuel Renault, Oscar Mendez-Bonilla, Xavier Franch, and
Carme Quer. A Pattern-based Method for Building Re-
quirements Documents in Call-for-tender Processes. IJCSA,
6(5):175–202, 2009.

[47] Milene Serrano and Maurício Serrano. Ubiquitous, Perva-
sive and Mobile Computing: A Reusable-Models-based Non-
Functional Catalogue. In Proceedings of Requirements En-
gineering@Brazil, volume 1005 of CEUR. CEUR-WS.org,
2013.

[48] Nicholas C. Zakas. Disallow duplicate properties.

[49] Nicholas C. Zakas. Disallow empty rules.

[50] Nicholas C. Zakas. CSS Lint Rules.

[51] Nicholas C. Zakas. Disallow import.

[52] Nicholas C. Zakas. Require properties appropriate for dis-
play.

[53] Boryana Goncharenko. Detecting Violations of CSS Code
Conventions. In Pre-proceedings of the Eighth Seminar on
Advanced Techniques and Tools for Software Evolution (SAT-
ToSE), pages 89–91, 2015.

Acknowledgement
The authors express their gratitude to the organisers and
reviewers of the Eighth Seminar on Advanced Techniques
and Tools for Software Evolution (SATToSE) where the very
early state of this project was first presented [53], and to the
University of Amsterdam that sponsored our participation.

http://www.benjamintoll.com/software/css_code_conventions.html
http://www.benjamintoll.com/software/css_code_conventions.html
http://ss64.com/css/syntax-naming.html
http://learn.shayhowe.com/html-css/writing-your-best-code/
http://www.phpied.com/css-coding-conventions/
http://wiki.liquid-contact.com/index.php?title=CSS_Coding_Conventions
http://isobar-idev.github.io/code-standards/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
http://www.realdealmarketing.net/docs/css-coding-style.php
http://www.morshed-alam.com/2010/01/css-coding-guidelinesconventions.html
http://csswizardry.com/2012/04/my-html-css-coding-style/
http://www.apppie.org/pages/approach/naming.html
http://wiki.eclipse.org/Orion/Coding_conventions#CSS
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1109/TOOLS.1997.654742
http://dx.doi.org/10.1007/978-3-540-69534-9_16
http://dx.doi.org/10.1007/978-3-540-69534-9_16
http://dx.doi.org/10.1145/1409720.1409733
http://dx.doi.org/10.1145/1409720.1409733
http://dx.doi.org/10.1145/1134305
http://dx.doi.org/10.1145/2737182.2737188
http://dx.doi.org/10.1145/2737182.2737188
http://dx.doi.org/10.1007/978-3-642-02351-4_10
http://dx.doi.org/10.1007/978-3-642-02351-4_10
http://dx.doi.org/10.1145/2695664.2695670
http://dx.doi.org/10.1145/2695664.2695670
http://ceur-ws.org/Vol-1077/amt13_submission_9.pdf
http://ceur-ws.org/Vol-1077/amt13_submission_9.pdf
http://ceur-ws.org/Vol-1077/amt13_submission_9.pdf
http://dx.doi.org/10.1109/ICSME.2014.33
http://www.tmrfindia.org/ijcsa/v6i57.pdf
http://www.tmrfindia.org/ijcsa/v6i57.pdf
http://ceur-ws.org/Vol-1005/erbr2013_submission_7.pdf
http://ceur-ws.org/Vol-1005/erbr2013_submission_7.pdf
http://ceur-ws.org/Vol-1005/erbr2013_submission_7.pdf
https://github.com/CSSLint/csslint/wiki/Disallow-duplicate-properties
https://github.com/CSSLint/csslint/wiki/Disallow-empty-rules
https://github.com/CSSLint/csslint/wiki/Rules
https://github.com/CSSLint/csslint/wiki/Disallow-%40import
https://github.com/CSSLint/csslint/wiki/Require-properties-appropriate-for-display
https://github.com/CSSLint/csslint/wiki/Require-properties-appropriate-for-display
http://sattose.wdfiles.com/local--files/2015%3Atalks/proceedings.pdf
http://sattose.wdfiles.com/local--files/2015%3Atalks/proceedings.pdf

