
Using Dependence Graphs for Slicing Functional Programs
Extended Abstract

Vadim Zaytsev
Universiteit van Amsterdam, The Netherlands

vadim@grammarware.net

One of the popular ways to perform automated analysis of pro-
grams is by manipulating slices — reduced executable programs
derived from the originals by removing some steps in such a way
that they replicate parts of the original behaviour [18]. Such slices
are useful for debugging and comprehension, refactoring and re-
structuring, reverse engineering and maintenance, model checking,
as well as other tasks related to similar problems. At the core of
this family of methods are the slicing strategies (backward slic-
ing [18], forward slicing [8], as well as other variations [19], in-
cluding higher-order lazy functional slicing [13]) and the base data
structures. In rare cases analysis, slicing and transformation are
performed directly on abstract syntax trees enriched with annota-
tions [3]. However, it is more productive to operate on a data struc-
ture specifically designed to facilitate these tasks. Many such struc-
tures were proposed in the last three decades:

• Program Dependence Graph [6, 10] was the first and the most
classic of the data structures used for slicing. It was meant to
represent imperative programs in Pascal-like languages and es-
sentially is a pseudograph with edges representing control and
data dependences. Its creation is also an imperatively formu-
lated algorithm that builds a control flow graph, a data depen-
dence graph, a data dominator tree, etc.

• System Dependence Graph [8] is a generalisation of a PDG that
is capable of expressing interprocedural relations and therefore
capable of facilitating more global analyses and detection of
interprocedural code clones.

• Dynamic Dependence Graph [1] is a variant more suitable for
debugging and similar tasks that can benefit from representing
runtime information. From this point of view, both PDGs and
SDGs, as well as any of their extensions, are “static dependence
graphs”.

• Value Dependence Graph [17] is an efficient structure similar to
data flow/dependence graphs but is demand-driven. It does not
require a full control flow graph, but a control flow graph can
be generated from it.

• United Dependence Graph [7] is a hybrid attempt to gain
the best of static and dynamic dependence graphs. The static

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’15, September 14–16, 2015, Koblenz, Germany.
Copyright c© 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

PDGs/SDGs are inefficient but complete; the dynamic ones are
fragmented but expressive. A UDG contains both static and dy-
namic edges for both data and control dependences and is used
in cases that need both static and dynamic information, such as
testing.

• Java Dependence Graph (JSDG) [20] is the first attempt to ex-
tend PDGs/SDGs to a more advanced programming language
with object-oriented concepts leading to relations like mem-
bership or inheritance dependences. The case study was lim-
ited to pre-functional Java but its treatise of interfaces allows
straightforward extension to other OO languages with multiple
inheritance; there were similar projects for other languages like
C++ [9]. Polymorphism is modelled statically by overapproxi-
mation.

• Java Dependence Graph (JSysDG) [16] is a result of several
incremental improvements of JSDG; its creation is also struc-
tured in the classic PDG style with milestone helper structures
that represent dependences among methods, classes, interfaces.
The most crucial addition is another kind of edges — summary
edges that represent the transitive flow of dependence across a
callsite caused by both control and data dependences.

• Functional Dependence Graph [12] was finally an application
of the same principles to a functional language. The case study
was Haskell, but the approach is identical or straightforwardly
adaptable to ML, Scala and other functional languages with ex-
plicit type constructors. The focus of FDG is on high abstraction
level constructs, so slicing is pretty sophisticated but does not
cover expressions, just “functional statements”.

• Term Dependence Graph [4] is a very relevant technology of
modelling dependences in term rewriting systems which fo-
cuses on data constructions and function calls without support-
ing higher order constructions and cond-like branching.

• Behaviour Dependence Graph [15] successfully modelled
pattern-driven dispatch and expression decomposition and pro-
vided advanced FDG-like functionality for Erlang.

• Probabilistic System Dependence Graph [2] enables calcula-
tion of the probability of correctness of an execution, based on
learned execution-state changes over previously known correct
executions. It entails heavy computations based on large vol-
umes of collected data and is meant to be used on small critical
software systems.

• Weighted System Dependence Graph [5] is another hybrid
static/dynamic approach where the edges in a static dependence
graph are weighed according to all (known) executions. It is ba-
sically a realistically performing simplified version of PPDG.

• Erlang Dependence Graph [14] was named after the language
it was tested on, but essentially it is an approach not inherently

mailto:vadim@grammarware.net

limited to Erlang: its authors managed to combine benefits of
SDG (interprocedural functionality), BDG (pattern matching),
FDG (high level), TDG (low level) and JSysDG (summary
edges). Instead of functional statements, it uses a closely related
concept of program positions.

• Execution Dependence Graph [11] is a recent addition to the
family that works on the level of bytecode and helps to find
code clones there for the sake of library identification.

At IFL 2015, I would like to discuss various opportunities,
tradeoffs and limitations in using dependence graphs of functional
programs for productive and efficient slicing in the context of dif-
ferent activities and tasks such as functional program comprehen-
sion, optimisation, parallelisation, bidirectionalisation, etc. This
will be an endeavour to contribute to the lines of research sum-
marised above, and commodify program slicing for different kinds
of functional languages.

References
[1] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In B. N.

Fischer, editor, Proceedings of the 11th Conference on Programming
Language Design and Implementation, pages 246–256. ACM, 1990.
ISBN 0-89791-364-7. .

[2] G. K. Baah, A. Podgurski, and M. J. Harrold. The Probabilistic Pro-
gram Dependence Graph and Its Application to Fault Diagnosis. IEEE
Transactions on Software Engineering (TSE), 36:528–545, 2010.

[3] C. Brown. Tool Support for Refactoring Haskell Programs. Phd
thesis, School of Computing, University of Kent, Canterbury, Kent,
UK, 2008.

[4] D. Cheda, J. Silva, and G. Vidal. Static Slicing of Rewrite Systems.
In Proceedings of the 15th Workshop on Functional and (Constraint)
Logic Programming (WFLP 2006), volume 177 of ENTCS, pages 123–
136, 2007. . URL http://www.sciencedirect.com/science/
article/pii/S1571066107002174.

[5] F. Deng and J. Jones. Weighted System Dependence Graph. In
Proceedings of the Fifth International Conference on Software Testing,
Verification and Validation (ICST), pages 380–389, April 2012. .

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program De-
pendence Graph and Its Use in Optimization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3):319–349, July
1987. ISSN 0164-0925. .

[7] I. Forgács, Á. Hajnal, and É. Takács. Regression Slicing and Its
Use in Regression Testing. In Proceedings of the 22nd International
Computer Software and Applications Conference (COMPSAC), pages
464–469. IEEE Computer Society, 1998. . URL http://doi.
ieeecomputersociety.org/10.1109/CMPSAC.1998.716697.

[8] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural Slicing Using
Dependence Graphs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(1):26–60, 1990. . URL http://doi.
acm.org/10.1145/77606.77608.

[9] D. Liang and M. J. Harrold. Slicing Objects Using System Depen-
dence Graphs. In ICSM, pages 358–367. IEEE Computer Society,
1998.

[10] K. J. Ottenstein and L. M. Ottenstein. The Program Dependence
Graph in a Software Development Environment. In Proceedings of the
Software Engineering Symposium on Practical Software Development
Environments, pages 177–184. ACM, 1984. ISBN 0-89791-131-8. .

[11] J. Qiu, X. Su, and P. Ma. Library functions identification in binary
code by using graph isomorphism testings. In Y.-G. Guéhéneuc,
B. Adams, and A. Serebrenik, editors, Proceedings of the 22nd In-
ternational Conference on Software Analysis, Evolution and Reengi-
neering, pages 261–270. IEEE, 2015. ISBN 978-1-4799-8469-5. .

[12] N. F. Rodrigues and L. S. Barbosa. Component identification through
program slicing. In Proceedings of Formal Aspects of Component
Software (FACS’05), volume 160 of ENTCS, pages 291–304. Elsevier,

2006. . URL http://dx.doi.org/10.1016/j.entcs.2006.05.
029.

[13] N. F. Rodrigues and L. S. Barbosa. Higher-Order Lazy Functional
Slicing. Journal of Universal Computer Science, 13(6):854–873,
2007. . URL http://dx.doi.org/10.3217/jucs-013-06-0854.

[14] J. Silva, S. Tamarit, and C. Tomás. System Dependence Graphs in Se-
quential Erlang. In Proceedings of the 15th International Conference
on Fundamental Approaches to Software Engineering, volume 7212
of LNCS, pages 486–500. Springer, 2012.

[15] M. Tóth, I. Bozó, Z. Horváth, L. Lövei, M. Tejfel, and T. Kozsik.
Impact Analysis of Erlang Programs Using Behaviour Dependency
Graphs. In CEFP, volume 6299 of LNCS, pages 372–390. Springer,
2009. .

[16] N. Walkinshaw, M. Roper, and M. Wood. The Java System Depen-
dence Graph. In Proceedings of the Third International Workshop on
Source Code Analysis and Manipulation, pages 55–64. IEEE Com-
puter Society, 2003. ISBN 0-7695-2005-7. .

[17] D. Weise, R. F. Crew, M. D. Ernst, and B. Steensgaard. Value De-
pendence Graphs: Representation without Taxation. In H.-J. Boehm,
B. Lang, and D. M. Yellin, editors, Conference Record of the 21st Sym-
posium on Principles of Programming Languages, pages 297–310.
ACM Press, 1994. ISBN 0-89791-636-0. .

[18] M. Weiser. Program Slicing. IEEE Transactions on Software Engi-
neering (TSE), 10(4):352–357, 1984.

[19] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A Brief Survey of
Program Slicing. SIGSOFT Software Engineering Notes, 30(2):1–36,
Mar. 2005. ISSN 0163-5948. . URL http://doi.acm.org/10.
1145/1050849.1050865.

[20] J. Zhao. Applying Program Dependence Analysis To Java Software. In
Proceedings of the Workshop on Software Engineering and Database
Systems, pages 162–169, 1998.

http://www.sciencedirect.com/science/article/pii/S1571066107002174
http://www.sciencedirect.com/science/article/pii/S1571066107002174
http://doi.ieeecomputersociety.org/10.1109/CMPSAC.1998.716697
http://doi.ieeecomputersociety.org/10.1109/CMPSAC.1998.716697
http://doi.acm.org/10.1145/77606.77608
http://doi.acm.org/10.1145/77606.77608
http://dx.doi.org/10.1016/j.entcs.2006.05.029
http://dx.doi.org/10.1016/j.entcs.2006.05.029
http://dx.doi.org/10.3217/jucs-013-06-0854
http://doi.acm.org/10.1145/1050849.1050865
http://doi.acm.org/10.1145/1050849.1050865

