
Submitted to:
TFPIE 2014

c© J. van Eijck & V. Zaytsev
This work is licensed under the
Creative Commons Attribution License.

A Course in Haskell-Based Software Testing

Jan van Eijck
Software Analysis and Transformation

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

jve@cwi.nl

Vadim Zaytsev
Informatics Institute

Universiteit van Amsterdam
Amsterdam, The Netherlands
vadim@grammarware.net

1 Software Testing for Software Engineers

The curriculum of the one-year Master of Science Programme in Software Engineering at the University
of Amsterdam1 starts with a course in Haskell-based software testing. Other courses in the curriculum
focus on software construction, software evolution, software architecture, software process, and require-
ments engineering. The goal of the Master of Software Engineering program is to transform bachelors in
computer science with reasonable programming experience into full-fledged software engineers within
one year. Around 60 students graduate from this program per year.

The functional programming perspective on testing was chosen to make formal methods digestible for
students without extensive formal background. We see it as a more apparently practical alternative to
other less strict approaches to formal methods like teaching VDM [FF93]. Logic reasoning and math-
ematical notation are brought in where applicable, but wherever possible Haskell itself is used as a
specification language, and type specifications for functional programs are presented as examples of
software specification. The motivation communicated to students is to make and test quality software —
i.e., software that is maintainable, reliable, efficient and user-friendly [Som10].

The current set-up of the course has the following ingredients:

1. Two hours of lecturing per week.

2. Two hours of workshop sessions per week, in groups of 20 students. The sessions consist of
blackboard exercises in formal thinking, with applications to programming.

3. Two days per week of lab work, consisting of programming and testing exercises that are closely
linked to the contents of the lectures, with a submission deadline each week.

4. Reading assignments from the book [DvE12], intended to cover Chapters 1 through 7: formal
reasoning with propositional and predicate logic, sets and set notation, relations and relational
properties, functions as relations, induction and recursion on numbers, lists, trees, and more gen-
erally, handling recursive data structures.

The student audience is heterogeneous, and this programme is perceived as very hard by some and
relatively easy by others. In the next sections, we will give examples of how we use Haskell to get the
importance across of specification as a basis for testing. We will do this by discussing elements of the
course, explaining in each particular case what the element is supposed to teach, and how.

1http://www.software-engineering-amsterdam.nl

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.software-engineering-amsterdam.nl

2 A Course in Haskell-Based Software Testing

2 Understanding (Type) Specifications

The course is problem based and student-driven in the sense that each year we measure the actual initial
knowledge of students and adjust the material based on it. Workshops group division is also based on
estimated levels of knowledge. The course starts with a quiz. One of the quiz questions introduces three
software engineers who are discussing a simple grammar:

S ::= a | aS.

Engineer A says: the grammar generates a finite language, for every expression generated by the gram-
mar has finite length. Engineer B says: the grammar generates an infinite language, for the grammar
can generate expressions that are infinitely long. Engineer C says: the grammar generates an infinite
language, but all of the expressions that are generated by the grammar have finite length. Which of them
is right, and why?

Maybe surprisingly, this yields many wrong answers. So consider “Sentences can go on and on and on
(and on)∗” and compare the following two programs.

sentence = "Sentences can go " ++ onAndOn

where onAndOn = "on and " ++ onAndOn

sentences = "Sentences can go on" : map (++ " and on") sentences

What are the types? What is the connection with the dispute between the software engineers? Can you
now resolve the dispute?

Next, we show how Haskell can be used to solve the famous Lady or Tiger puzzles of Raymond
Smullyan [Smu09]. In the first puzzle, there are two rooms, and a prisoner has to choose between
them. Each room contains either a lady or a tiger. In the first test the prisoner has to choose between a
door with the sign “In this room there is a lady, and in the other room there is a tiger”, and a second door
with the sign “In one of these rooms there is a lady and in the other room there is a tiger.” A final given
is that one of the two signs tells the truth and the other does not.

Towards a Haskell implementation that states the puzzle, we first introduce a data type:

data Creature = Lady | Tiger deriving (Eq,Show)

Given this, it is clear what the specifications of the types for the signs on the two doors should be:

sign1, sign2 :: (Creature,Creature) -> Bool

And the messages are as follows:

J. van Eijck & V. Zaytsev 3

sign1 (this,other) = this == Lady && other == Tiger

sign2 (x,y) = x /= y

The first challenge for the students is to find the type of the solution. Now we can explain the concept of
a logical space, and the notions of ignorance about the solution and knowledge of the solution.

solution :: [(Creature,Creature)]

Once the students understand this, it is easy to explain how the solution can be given by applying the
constraint “one of the two signs tells the truth and the other does not.”

solution = [(x,y) | x <- [Lady,Tiger],

y <- [Lady,Tiger],

sign1 (x,y) /= sign2 (x,y)]

Now, here is the specification of a well-designed Lady and Tiger puzzle: the constraints should be such
that there is a single solution. This is the recipe for becoming a logic puzzle designer. Without looking
at the Smullyan book, design some Lady and Tiger puzzles of your own, and use Haskell to test whether
your puzzles are well-designed.

For this, it is useful to introduce a solve procedure:

solve p = [(x,y) | x <- [Lady,Tiger],

y <- [Lady,Tiger],

p (x,y)]

What is the type of solve?

Here is an example puzzle. It is given that either both signs assert something that is true, or both signs
assert falsehoods. The first sign says: “In both of these rooms there are ladies.” The second sign says:
“In this room there is a lady, in the other room there is a tiger.” Is this a well-designed puzzle? No, it is
not:

sign1’ (this,other) = this == Lady && other == Lady

sign2’ (other,this) = other == Tiger && this == Lady

solution1 = solve (\ (x,y) -> sign1’ (x,y) == sign2’ (x,y))

4 A Course in Haskell-Based Software Testing

This gives: solution1 == [(Lady,Tiger),(Tiger,Tiger)]. This indicates that we have to add a
constraint. The King says to the prisoner: “If you make the right choice, it is sure that you will not get
eaten.” Does this give us a well-designed puzzle? Yes, it does:

solution2 = solve (\ (x,y) -> sign1’ (x,y) == sign2’ (x,y)

&& not ((x,y) == (Tiger,Tiger)))

This gives solution2 == [(Lady,Tiger)]. The students are now well on their way to become logic
puzzle designers, and they have understood what it means for a logic puzzle to meet its specification.
This naturally generalises to derivation of any data under a given set of constraints (such as test data
generation).

3 Functional Imperative Style

The point we want to get across in the course is that the crucial ingredient of a good testing technique is
adequate specification of what your program is supposed to do.

We make short shrift with the prejudice that the functional programming paradigm is far removed from
imperative programming. For that, we discuss the structure of a while loop.

If taken literally, the compound action “lather, rinse, repeat” would look like this:

lather ; rinse

So it makes sense to introduce a stop condition: Repeat the lather rinse sequence until your hair is clean.
This gives a more sensible interpretation of the repetition instruction:

START

hair clean?
lather ; rinse

STOP
yes

no

J. van Eijck & V. Zaytsev 5

So we see that the two ingredients of a while loop are:

• a test for loop termination;

• a step function that determines the parameters for the next step in the loop.

The termination test takes a number of parameters and returns a boolean, the step function takes the same
parameters and computes new values for those parameters.

Here is another example loop:

Integer Decomposition Algorithm

• while even y do
x := x+1;
y := y÷2.

The functional version has the loop replaced by a recursive call:

g (x,y) = if even y then g (x+1,y ‘div‘ 2)

else (x,y)

But why not introduce an explicit while functional?

while :: Eq a => (a -> Bool) -> (a -> a) -> a -> a

while p f = \ x -> if p x then while p f (f x)

else x

Alternative definition of while (but a bit harder to read):

while = until . (not.)

This allows us to write:

decomp = while (even.snd) (\ (x,y) -> (x+1,y ‘div‘ 2))

6 A Course in Haskell-Based Software Testing

Euclid’s GCD algorithm

1. while x 6= y do
if x > y then x := x− y else y := y− x;

2. return y.

To put Euclid’s algorithm in functional imperative style, we introduce a version of while with two pa-
rameters:

while2 :: (a -> b -> Bool)

-> (a -> b -> (a,b))

-> a -> b -> b

while2 p f x y

| p x y = let (x’,y’) = f x y in

while2 p f x’ y’

| otherwise = y

This allows us to write:

euclidGCD :: Integer -> Integer -> Integer

euclidGCD = while2

(\ x y -> x /= y)

(\ x y -> if x > y

then (x-y,y)

else (x,y-x))

4 Hoare Assertions as Testable Specifications

Some abbreviations for the logic of specifications:

infix 1 ==>

p ==> q = (not p) || q

forall = flip all

J. van Eijck & V. Zaytsev 7

A (Hoare) assertion about an imperative program [Hoa69] has the form

{Pre} Program {Post}

where Pre and Post are conditions on states.

This Hoare statement is true in state s if truth of Pre in s guarantees truth of Post in any state s′ that is a
result state of performing Program in state s.

One way to write assertions for functional code is as wrappers around functions. This results in a much
stronger sense of self-testing than what is called self-testing code (code with built-in tests) in test driven
development [Bec02].

The precondition of a function is a condition on its input parameter(s), the postcondition is a condition
on its value.

Here is a precondition wrapper for functions with one argument. The wrapper takes a precondition prop-
erty and a function and produces a new function that behaves as the old one, provided the precondition
is satisfied.

pre :: (a -> Bool) -> (a -> b) -> a -> b

pre p f x = if p x then f x

else error "pre"

A postcondition wrapper for functions with one argument:

post :: (b -> Bool) -> (a -> b) -> a -> b

post p f x = if p (f x) then f x

else error "post"

Example use:

decmp = post (odd.snd) decomp

More generally, an assertion is a condition that may relate input parameters to the computed value. Here
is an assertion wrapper for functions with one argument. The wrapper wraps a binary relation expressing
a condition on input and output around a function and produces a new function that behaves as the old
one, provided that the relation holds.

assert :: (a -> b -> Bool) -> (a -> b) -> a -> b

assert p f x = if p x (f x) then f x

else error "assert"

8 A Course in Haskell-Based Software Testing

Example use:

decompA = assert (\ (i,j) (m,n) -> 2^i*j == 2^m*n) decomp

Let factors :: Integer -> [Integer] be a function that computes the list of (prime) factors of an
integer. Let’s say this function is implemented as follows:

factors :: Integer -> [Integer]

factors n = factors’ n 2 where

factors’ 1 _ = []

factors’ n m

| n ‘mod‘ m == 0 = m : factors’ (n ‘div‘ m) m

| otherwise = factors’ n (m+1)

What would a reasonable assertive version of the factors function look like? Answer:

factorsA :: Integer -> [Integer]

factorsA = assert (\ x xs -> x == product xs) factors

A postcondition wrapper for functions with two arguments:

post2 :: (c -> Bool) -> (a -> b ->c) -> a -> b -> c

post2 p f x y = if p (f x y) then f x y

else error "post2"

As an example we specify the GCD of two integers as a postcondition. The definition of GCD is given
in terms of the divides relation. An integer n divides another integer m if the process of dividing m by n
leaves a remainder 0.

divides :: Integer -> Integer -> Bool

divides n m = rem m n == 0

An integer n is the GCD of k and m if n divides both k and m, and every divisor of k and m also divides
n.

J. van Eijck & V. Zaytsev 9

isGCD :: Integer -> Integer -> Integer -> Bool

isGCD k m n = divides n k && divides n m &&

forall [1..min k m]

(\ x -> (divides x k && divides x m)

==> divides x n)

This yields the following self-testing version of Euclid’s GCD algorithm:

euclidGCD’ :: Integer -> Integer -> Integer

euclidGCD’ k m = post2 (isGCD k m) euclidGCD k m

An invariant of a program P in a state s is a condition C with the property that if C holds in s then C will
also hold in any state that results from execution of P in s. Thus, invariants are Hoare assertions of the
form:

{C} Program {C}

If you wrap an invariant around a step function in a loop, the invariant documents the expected behaviour
of the loop.

Assuming the program to be a function of type a -> a, the following code wraps an invariant around
the program:

invar :: (a -> Bool) -> (a -> a) -> a -> a

invar p f x =

let

x’ = f x

in

if p x ==> p x’ then x’

else error "invar"

This is used in the following code, which provides a built-in test that decomposition of (0,n) yields a
pair (i, j) with the property that j is odd and n = 2i · j.

decomp’ :: Integer -> (Integer,Integer)

decomp’ n = decmp (0,n) where

decmp = while (\ (_,m) -> even m)

(invar

(\ (i,j) -> 2^i*j == n)

(\ (k,m) -> (k+1,m ‘div‘ 2)))

10 A Course in Haskell-Based Software Testing

The examples make clear that the essence of writing testable code is writing useful specifications, in the
form of assertions, preconditions, postconditions and invariants.

More often than not, an assertive version of a function is much less efficient than the regular version: the
assertions are inefficient specification algorithms to test the behaviour of efficient functions. However,
this hardly matters: to turn assertive code into self-documenting production code, all you have to do is
load a module with alternative definitions of the assertion and invariant wrappers.

Take the definition of assert. This is replaced by:

assert :: (a -> b -> Bool) -> (a -> b) -> a -> b

assert _ = id

And so on for the other wrappers. So the self-testing specifications do not burden the code, for in the
production version we can redefine the specifications.

Suppose a program (implemented function) fails its implemented assertion. What should we conclude?
This is a pertinent question, for the assertion itself is a piece of code too, in the same programming
language as the function that we want to test. So what are we testing:

• the correctness of the code?

• the correctness of the implememented specification for the code?

In fact, we are testing both at the same time. Therefore, the failure of a test can mean several things, and
we should be careful to find out wat our situation is:

1. There is something wrong with the program.

2. There is something wrong with the specification of the assertion for the program.

3. There is something wrong with the program and with its specification.

It is up to us to find out which case we are in. In any case it is important to find out where the problem
resides. In the first case, we have to fix a code defect, and we are in a good position to do so because
we have the specification as a yardstick. In the second case and third case, we are not ready to fix code
defects. First and foremost, we have to fix a defect in our understanding of what our program is supposed
to do. Without that growth in understanding, it will be very hard indeed to detect and fix possible defects
in the code itself.

5 Further Topics

Sudoku problems have a straightforward specification. If a declarative specification is to be taken seri-
ously, all there is to solving sudokus is specifying what a sudoku problem is, and developing the code
from this. That is what we do in the course. Next, we develop a sudoku problem generator that can be
used to test the solver.

J. van Eijck & V. Zaytsev 11

Another advanced topic is modular arithmetic for public key cryptography. We implement and test
various (probabilistic) algorithms for fast prime recognition, starting from the naive Fermat method, and
ending with the Miller-Rabin algorithm [Mil76, Rab80]. To test these, we use generators for composite
numbers, and for Carmichael numbers (odd composite numbers n that satisfy Fermat’s little theorem
an−1 ≡ 1 mod n for any a with gcd(a,n) = 1). This gives a chance to explain the basics of public key
cryptography, explain Diffie-Hellman key exchange [DH76], and ultimately explain, implement and test
RSA encryption and decryption [RSA78].

Further topics are stable matching algorithms and graph algorithms. For stable matching, the key is to
understand the notion of stability, and to recognise that the following function implements the specifica-
tion.

isStable :: Wpref -> Mpref -> Engaged -> Bool

isStable wf mf engaged =

forall engaged (\ (w,m) -> forall engaged

(\ (w’,m’) -> (wf w m’ m ==> mf m’ w’ w)

&&

(mf m w’ w ==> wf w’ m’ m)))

The students are expected to recognise that this implements the famous definition of [GS62].

∀(w,m) ∈ E ∀(w′,m′) ∈ E ((prwm′m→ prm′w
′w)∧ (prmw′w→ prw′m

′m)).

Understanding this definition is the key to understanding construction of stable matchings. After this, we
discuss, implement and test algorithms for stable matching and college admission.

We also discuss, implement and test algorithms for transitive closure in simple graphs and for shortest
path in weighted graphs. The main difficulty here is to explain to the students that exercises about
relational structures like graphs provide an abstract perspective on problems that going to occur often in
their actual practice as software engineers. We have learnt from experience that it is very important to
give many applications, and point out where the formal techniques from logic and algorithm design meet
the practical world of software engineering. Once the students learn to recognise binary relations they
start to see that transitive closures are everywhere. Then they can answer questions like the following,
and what is more, they can appreciate that the answers are relevant for software engineering.

Let R be a binary relation on A. Two elements x and y of A are called weakly R-connected if there is a
path of forward or backward R steps from x to y. It is allowed that this path is empty, so every point is
weakly R connected to itself.

Let Rel a be the type [(a,a)]. Suppose a function

tc :: Ord a => Rel a -> Rel a

for the transitive closure of a relation and a function

inv :: Ord a => Rel a -> Rel a

for inverting a relation are given. Use these to define a function

12 A Course in Haskell-Based Software Testing

wConnected :: Ord a => Rel a -> a -> a -> Bool

and indicate how you would argue or test that your implementation is correct. Answer:

wConnected :: Ord a => Rel a -> a -> a -> Bool

wConnected r x y =

x == y || elem (x,y) (tc (r ++ (inv r)))

Obviously, from any point x there is a path from x to itself. A non-empty path from x to y exists iff x and
y are connected by the transitive closure of R∪R−1, and that is precisely what the implementation says.

Let R be a binary relation on A. R is called cycle-free if for no x in A it is the case that there is a non-
empty path of forward or backward R steps from x to x. Write a property for this (hint: use your answer
to the previous question, or at least your method to answer that question):

cycleFree :: Ord a => Rel a -> Bool

cycleFree r = ...

Fill in the dots. Next, indicate how you would argue for the correctness of your implementation. Answer:

cycleFree :: Ord a => Rel a -> Bool

cycleFree r = let

s = tc (r ++ (inv r))

in

all (\ (x,y) -> x /= y) s

In a cycle-free relation all non-empty paths consisting of forward and backward R step are forbidden,
so what we have to do is check their existence for any pair of nodes x and y. That is precisely what the
implementation does.

The students are led to learn how see the correspondence between tc (r ++ (inv r)) and (R∪R−1)+,
and how to link abstract relations R to the kinds of relations that they encounter in real life, such as the
procedure call relations in software modules, the path relations in directory structures, the hyperlink
relations on internet, and so on. Their skills of manipulating relations are subsequently reused and
strengthened in the immediately following Software Evolution course where another functional language
called Rascal [KvdSV11] is used to complete metaprogramming tasks such as automated analysis and
visualisation of large software systems.

J. van Eijck & V. Zaytsev 13

6 Constructive Alignment

Formally, the learning objectives of the course, in Bloom’s (revised) terms [AKA+00], are:

• to recognise various testing techniques applied in practical software engineering;

• to compare testing techniques by applicability in certain scenarios;

• to implement formal specifications of software systems and test such systems for conformance;

• to differentiate among alternative approaches to testing and argue in favour of one against another;

• to judge efficiency of a given model for testing.

It is obvious that these are too difficult to reach with the lectures and practical assignments alone, which is
why another simultaneously running course (Academic Skills) is synchronised with the Software Testing
course and trains students in locating, consuming, assessing and combining scientific publications. In
particular, in 2013 they were confronted at the very start with a large TOSEM paper about evaluating
testing techniques [SM12]. All students appreciated that the paper was recent, but it took considerable
effort to process it, both for recent Bachelor students and for those with primarily industrial experience.
At the end of the two months, their academic skills were at a level where they all demonstrated their
ability to write an report logically reasoning for a chosen standpoint by reusing independently sought
journal and conference papers.

The actual depth of the material we could cover depended heavily on the factual starting expertise of
the students and was adjusted accordingly. Thus, a lot of time was spent during lectures and workshops
on rehashing the foundations of logic and formal methods, based on the first chapters of The Haskell
Road [DvE12]. On the other hand, the knowledge of basic practical software engineering skills related
to testing (such as JUnit or Jenkins) was not missed because the students mostly have already come in
contact with such technologies prior to our course. The teaching load was unsurprisingly at its highest
points for giving detailed feedback on students’ source code (to help changing the style, per section 3)
and students’ essays (mostly to prepare them for the imminent final graduation project).

The final grade in the course was determined by a final theoretical written examination (30%), a final
practical examination in Haskell programming (30%) and a cumulative score of the assignments com-
pleted by a group during the semester (40%). The course was positively evaluated by the students (an
average score for each question at least at 3 out of 5), yet with a disturbing number of remarks stating that
they still do not see how specifications relate to the practice of software engineering. This supports our
claim of impossibility of teaching them more mainstream or more advanced formal methods techniques
like VDM [FF93] to some extent, but also shows that there is space for future improvement.

In several years of experimenting with the course, there is a movement away from emphasis on the lec-
tures to emphasis on problem-related feedback and instruction. We also count not help noticing particular
similarities between our course set-up and the flipped classroom [Kin93, LPT00] paradigm:

• many students, especially those initially weaker in functional programming, took complementary
reading material very seriously and in the end regretted that it was not always the case that a lecture
was linked to particular chapters of the book;

• most time spent in classroom was dedicated, both by design and de facto, to solving practical
assignments and acquiring programming and specification skills, not on listening to explanations
of the underlying theory;

14 A Course in Haskell-Based Software Testing

• two most appreciated components of the course by the students were workshops where they got
direct feedback and were solving assignments in direct and close collaboration with the teachers,
and detailed feedback on their Haskell code;

• we put some relatively advanced technology to use: each student group had its own git repository
for version control of their source code — the teachers had access to all repositories and were able
to leave feedback remotely by commenting on commits, making pull requests, reporting issues,
etc;

• some kind of ad hoc learning analytics was used to resolve inter-group problems, and individual
grades within a group in several cases needed to be adjusted based on commits made by each
person;

• most problems we experienced were related either to heterogeneous backgrounds of students
(ranging from complete novices in functional programming to having had strong Haskell courses
in the past) or to inadequacy in meeting their expectations by insufficiently demonstrating the
links existing between the theoretical part (mathematical induction, equivalence classes, lambda
calculus, type systems) and the everyday practice of a future software engineering practitioner.

For the future, we are planning to introduce the following components to the course:

• guest lectures on the use of specification-based software testing in practice, since we have observed
ourselves their good impact in other courses of our programme;

• total flip of the classroom with pre-recorded lectures and open discussions in lecture time, to
continue the already established evolution trajectory for this course;

• peer assessment instead of or in addition to teacher feedback, since there seems to be strong posi-
tive evidence for groups of similar size and level [VHG14];

• automated tutoring as immediate supplement to teacher feedback on the source code, which also
seems to work well for courses in other universities2 [HJ14];

• demanding upfront knowledge of functional programming, even if from a non-Haskell or pre-
Haskell source [BW88].

In general, we hope to make better utilisation of teachers by spending time in class discussing the ques-
tions actually raised after studying the material; we hope to provide means to students to pace their own
learning process and thus ensure some minimum learnt by everyone disregarding their initial level; and
we certainly hope to collect more data from diagnostics and analytics in order to keep improving the
course in future years. Given that Master students usually do not suffer from the lack of motivation
(which is commonly presented as one of the biggest downsides of the flip [Ash12]) and that all these
elements were met with enthusiasm whenever experienced, we have high expectations for the future of
this course.

2Cf. Ask-Elle: http://ideas.cs.uu.nl/FPTutor/.

http://ideas.cs.uu.nl/FPTutor/

J. van Eijck & V. Zaytsev 15

References
[AKA+00] Lorin W. Anderson, David R. Krathwohl, Peter W. Airasian, Kathleen A. Cruikshank, Richard E.

Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock. A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Allyn & Bacon, 2000.

[Ash12] Katie Ash. Educators View “Flipped” Model With a More Critical Eye. Education Week, 32(2),
August 2012.

[Bec02] Kent Beck. Test Driven Development By Example. Addison-Wesley Longman, Boston, MA, 2002.
[BW88] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice-Hall, 1988.
[DH76] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on Information

Theory, 22(6):644–654, 1976.
[DvE12] K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming, Second Edition,

volume 4 of Texts in Computing. College Publications, London, 2012. First Edition: 2004.
[FF93] Neville J. Ford and Judith M. Ford. Introducing Formal Methods — a Less Mathematical Approach.

Ellis Horwood series in computers and their applications. Ellis Horwood, 1993.
[GS62] D. Gale and L. Shapley. College Admissions and the Stability of Marriage. American Mathematical

Monthly, 69:9–15, 1962.
[HJ14] Bastiaan Heeren and Johan Jeuring. Feedback Services for Stepwise Exercises. Science of Computer

Programming, 88:110–129, 2014.
[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,

12(10):567–580, 583, 1969.
[Kin93] Alison King. From Sage on the Stage to Guide on the Side. College Teaching, 41(1):30–35, 1993.
[KvdSV11] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-programming with Rascal. In

João Miguel Fernandes, Ralf Lämmel, Joost Visser, and João Saraiva, editors, Post-proceedings of
the Third International Summer School on Generative and Transformational Techniques in Software
Engineering (GTTSE 2009), volume 6491 of LNCS, pages 222–289. Springer, January 2011.

[LPT00] Maureen J. Lage, Glenn J. Platt, and Michael Treglia. Inverting the Classroom: A Gateway to Creating
an Inclusive Learning Environment. The Journal of Economic Education, 31(1):30–43, 2000.

[Mil76] Gary L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Computer and System
Sciences, 13(3):300–317, 1976.

[Rab80] Michael O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Number Theory,
12(1):128–138, 1980.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[SM12] Jaymie Strecker and Atif M. Memon. Accounting for Defect Characteristics in Evaluations of Testing
Techniques. ACM Transactions on Software Engineering and Methodology, 21(3):17:1–17:43, 2012.

[Smu09] Raymond M. Smullyan. The Lady or the Tiger? and Other Logic Puzzles. Dover, 2009. First edition:
1982.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley, 9th edition, 2010.
[VHG14] Andrii Vozniuk, Adrian Holzer, and Denis Gillet. Peer Assessment Based on Ratings in a Social

Media Course. In Matthew D. Pistilli, James Willis, Drew Koch, Kimberly E. Arnold, Stephanie D.
Teasley, and Abelardo Pardo, editors, Learning Analytics and Knowledge Conference (LAK ’14),
pages 133–137. ACM, 2014.

16 A Course in Haskell-Based Software Testing

Appendix: Relations Library

type Rel a = [(a,a)]

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s =

nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

lfp :: Ord a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

tc :: Ord a => Rel a -> Rel a

tc r = lfp (\ s -> (sort.nub) (s ++ (s @@ s))) r

inv :: Ord a => Rel a -> Rel a

inv = map (\ (x,y) -> (y,x))

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs)

sort [] = []

sort [x] = [x]

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) | x > y = y : (insert x ys)

| otherwise = x : y : ys

	Software Testing for Software Engineers
	Understanding (Type) Specifications
	Functional Imperative Style
	Hoare Assertions as Testable Specifications
	Further Topics
	Constructive Alignment

