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The most advanced and precise tools of source code analysis and manipulation are
based on structural definitions of software languages (i.e., grammars). The first step
in building such tools entails acquiring a grammar through extraction, recovery and
other means. One of such means is inference, when a grammar is inferred automatically
based on a corpus of source code examples and some method-specific assumptions. In
this project, we have analysed several previously published methods of grammatical
inference, reimplemented three of them and presented a detailed technical overview
together with quantitative and qualitative results of their replication. This thesis also
contains necessary background for the field of grammatical inference.
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Introduction
Software maintenance is a crucial part in every software project. According to studies
and statistics, around 40 to 80% of a project’s budget is spent on maintenance [1]. As
software rapidly grows in size and complexity, the problem only becomes worse with
time. Bug detection and removal are major tasks in the maintenance phase of the
software life cycle. Multiple analysis tools for software fault localization are developed,
and a grammar of a programming language provides substantial aid in building these
software engineering tools.

The term grammar is used in the sense of all established grammar formalisms and
grammar notations including context-free grammars, class dictionaries, XML schemas
as well as some forms of tree and graph grammars [2]. Grammar knowledge plays an
important role in multiple software development scenarios. These scenarios include:
engineering program analysis and modification tools, testing based on grammar/DFA,
converging the inferred grammar with the one provided by the language developers to
assess language use, structural pattern recognition, information retrieval, Web mining,
text processing, and extending/redisigning of existing DSLs.

Sometimes, the grammars of languages are not available or they are incomplete, and
have to be inferred from source code; especially in the case of programming language
dialects. Grammatical inference (or grammar induction) is the process of automat-
ically inferring a grammar by examining the sentences of an unknown language [3].
Grammatical inference is a mature topic and there are multiple published papers, that
treat techniques and algorithms on how to induct grammars of di�erent types of lan-
guages. These methods are tested on small samples of data and none of them (so far)
provide solid evidence of inferring a grammar of a mainstream programming language
from source code.

The goal of this thesis is to find a published inference method / algorithm, that might
be used to infer a grammar of a complex programming language from source code.
Stevenson et al. introduce the theory of grammatical inference, and present a systematic
exploration of inference techniques in software engineering [3]. Our approach is to take
it further and implement some of the methods, analyze applicability and report on it.

Chapter 1 covers the basic notions of grammars along with brief descriptions of di�erent
learning models. Chapter 2 comprises a survey of inference methods for programming
languages. In chapter 3, we explore two state of the art algorithms for finding minimal
DFAs, and we investigate if they can be practically used for inferring a grammar from
source code. Chapter 4 describes a method of inferring a context-free grammar from
positive samples using a Minimally Adequate Teacher.
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Chapter 1

Basic Notions of Grammars and
Language Learning

1.1 Learning Models

In order to investigate the plausibility and limitations of an inference problem, it is
important to know the type of learning model used by the inference method. This section
briefly describes the characteristics of the main learning models used in grammatical
inference. The classification is borrowed from the paper written by Stevenson et al. [3].

1.1.1 Identification in the limit

The first learning model used in grammatical inference was introduced by Gold in 1967
[4]. In this paper, Gold addressed the following question: "Is the information su�cient
to determine which of the possible languages is the unknown language?". He showed
that an inference algorithm can identify an unknown language in the limit from complete
information in a finite number of steps.

The input of this method is a sequence of strings (known as presentation or information).
The more samples that are used as input to the inference algorithm, the better is the
approximation of the target language. Given a su�ciently large sequence of strings, the
algorithm converge on the target language.

There are two types of presentation: positive presentation and complete presentation.
In the first type, the input strings are always part of the targeted language while in the
second type, the input sequence also contains strings that are not part of the targeted
language and are marked as such.

2



Chapter 1. Basic Notions of Grammars and Language Learning 3

The problem with this method is that the inference algorithm will not know when it has
identified the correct language, because there is always a chance the next sample will in-
validate the last hypothesis. Angluin o�ers a possible way to avoid this problem through
"tell-tales" [5], an unique set of strings that makes the di�erence between languages.

1.1.2 Teacher and Queries

This method uses a teacher (also known as an oracle), who knows the target language
and can answer particular types of questions (queries) from the inference algorithm. The
teacher is often a human.

Angluin describes six types of queries, two of which have a significant impact on language
learning: membership and equivalence queries [6]. For the membership queries, the
inference algorithm presents a string to the oracle and receives a "yes" or "no" answer.
For the equivalence queries, the inference algorithm presents a grammar hypothesis to
the oracle and receives "yes" if the the hypothesis is true and "no" otherwise. A teacher
who can answer both types of queries is known as minimally adequate teacher.

1.1.3 Probably Approximately Correct Learning

Valiant proposed a learning model that has elements of both "identification in the limit"
and "teachers and queries", the Probably Approximately Correct (PAC) Learning Model
[7]. It also di�ers from those two because it does not guarantee exact identification with
certainty, it is a compromise between accuracy and certainty.

The problem with this method is that the inference algorithm must learn in polynomial
time under all distributions, but it is believed to be too strict to be practical. The reason
for that is that many apparently simple concept classes are either known to be NP-hard,
or at least not known to be polynomially learnable for all distributions [3]. To mitigate
this problem, Li et al. propose to alter the inference algorithm to consider only simple
distributions [8].

1.2 Complexity

The literature in the field of grammatical inference is mostly dedicated to the analysis
of learnability and complexity of di�erent language classes. The results typically state
if a language class is learnable or not, consider techniques of learning in polynomial
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time, find the minimal grammar for a target language or identify the language with a
particular probability.

regular

context-free

context-sensitive

unrestricted

Figure 1.1: Chomsky hierarchy (source)

Gold showed that a large class of languages
can be identified in the limit, by using a style
similar to brute-force called "identification by
enumeration" [4]. By using complete informa-
tion, this style can identify regular, context-
free, context-free, context-sensitive and primi-
tive recursive classes.

In 1956, Chomsky introduced a hierarchy of
classes of formal grammars [9], that later be-
came known as Chomsky hierarchy.

This hierarchy consists of the following levels:

• Type-0 grammars (unrestricted grammars) include all formal grammars

• Type-1 grammars (context-sensitive grammars) generate the context-sensitive lan-
guages

• Type-2 grammars (context-free grammars) generate the context-free languages

• Type-3 grammars (regular grammars) generate the regular languages

The broader the class of the language, the harder it is to process and develop methods
for it. We start our search with the smallest class (regular) and go further from there.
However, regular languages have their limitations and might not help us, and that is the
reason why we also investigate the next smallest class (context-free), which covers most
of the cases.

Context-free grammars are the theoretical basis for the phrase structure of most pro-
gramming languages. Regular grammars define regular languages, which are commonly
used to define search patterns. These two grammar classes, which are the easiest classes
in Chomsky hierarchy (type-2 and type-3), are analyzed in the following chapters.

http://en.wikipedia.org/wiki/File:Chomsky-hierarchy.svg


Chapter 2

Survey of Inference Methods for
Programming Languages

In this chapter we briefly describe some grammatical inference methods, and analyze
their applicability to programming languages. We also examine the cases in which the
methods may be useful, and also the assumptions on which the methods are built upon.
Each section of this chapter is structured as follows: a small introduction, a list of
assumptions, a brief description of the method and finally, some implementation details.

2.1 Gramin: A System for Incremental Learning of Pro-
gramming Language Grammars

Many software vendors provide software maintenance as a service. They often rely on
analysis tools, developed in-house, for software fault localization. Many of these tools
are grammar-based, and therefore, a programming language grammar is required. The
main di�erences between learning a grammar in programming language domains and
other domains are the bigger size of samples, and the complexities of the programming
language grammar [10].

Saha et al. propose a programming language grammar inference system, called Gramin,
which is used to infer a grammar from sample programs [10]. Gramin employs various
optimizations to make the inference process more practical for programming languages.

2.1.1 Assumptions

• we have a large number of programs

5



Chapter 2. Survey of Inference Methods for Programming Languages 6

• we have an initial set of grammar rules (an incomplete CFG)

• we have a lexer which is already in its correct form

• we know at least one rule for each type of statement

• we do not have access to the compiler for the language to be learned

2.1.2 Algorithm

Gramin starts by breaking the input programs into consistent statements using the lexer.
For each type of statement, Gramin employs the learning algorithm from its positive
sample set, in order of decreasing frequency. The pseudo-code and more examples can
be found in [11].

Gramin employs an iterative technique (called Gramin ≠ one), in which each iteration
takes one sample as input, determines a set of rules that along with input rules parses
the given sample [10]. If for any sample, it cannot determine any rule that parses the
sample, then the process backtracks to the last sample, and finds another set of rules.

Because there can be multiple sets of rules, Gramin uses various goodness criteria to
choose a set of rules over the other. One of these optimizations is the Focus algorithm,
which reduces the scope of search of rules in Gramin≠one to those nonterminals where
the change can occur. This optimization is based on the observation that only a few
tokens are responsible for unsuccessful parsing of a string. Saha et al. analyze and
present the e�ects of the optimizations employed by Gramin [10].

2.1.3 Implementation

Saha et al. showed the results of some of the experiments performed using Gramin [10],
implemented in Java and XSB Prolog. Because XSB uses a top-down goal directed
resolution strategy, Gramin does not compute the entire bridge relation. Instead, it only
generates the result sets obtained by the focus algorithm.

The presented case study is a complex industry standard language called ABAP . Be-
cause the language is proprietary, the grammar is not publicly available. In their exper-
iments, they start with a basic grammar that can parse only the first statement of this
language, and describe how the grammar changes with every iteration. They also show
the e�ectiveness of some of the optimizations compared with an unoptimized version.
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We asked the authors of this method to share the source code, so we could test it and
benchmark it with multiple samples. One of the authors answered saying that they are
not allowed by IBM to share source code.

2.2 Inferring Grammar Rules of Programming Language
Dialects

The grammar of a programming language is an important asset because it is used in
building many software engineering tools. Sometimes, grammars of languages are not
available and have to be inferred from source code; especially in the case of programming
language dialects.

Dubey et al. propose a method for inferring the grammar of a programming language
when an incomplete grammar along with a set of correct programs is given as input [12].
The authors of this paper also suggest a rule evaluation order (the order in which the
rules are evaluated for correctness) to improve the process of grammar inference.

Their experiments show that the rule evaluation order improves the performance of the
inference algorithm [12]. This rule evaluation order is extended and explained by Dubey
in more detail in another paper titled "Goodness Criteria for Programming Language
Grammar Rules" [13].

2.2.1 Assumptions

• we have a set of correct programs

• we have an incomplete grammar

• the statements corresponding to each new keyword can be expressed by exactly
one grammar rule

• the set of new keywords is known beforehand (the lexical analyzer does not recog-
nize a new keyword as an existing terminal or as an unknown terminal)

• the right hand side (RHS) of missing rules start with a new keyword

2.2.2 Algorithm

The algorithm proposed by Dubey et al. uses an iterative approach with backtracking
[12]. In each iteration, a set of possible rules corresponding to a new terminal is built
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and one among them is added in the grammar. The initial version of the method receives
as input an incomplete grammar with one rule missing which, if found, will make the
grammar complete.

If the grammar requires multiple rules to be found, in order to become complete, the
algorithm iteratively builds a set of possible rules corresponding to each new terminal
and adds them in the grammar. This method requires that there is at least one program
where a new terminal K is the last new terminal. Once a rule corresponding to K is
added in the grammar, K no longer remains a new terminal.

Because the rule evaluation order has a huge influence on the algorithm’s performance,
Dubey et al. propose a criterion for rule evaluation order [12]. This criterion is tested
with di�erent programming language grammars: viz, C, Java, Matlab, Cobol. They
discovered that the rules with higher weight criterion are generally correct rules (in
almost 97% of the cases).

2.2.3 Implementation

The authors presented the results of their experiments for four programming languages:
C, Java, Matlab and Cobol. These experiments were conducted only on a few statement
types (like case, switch, enum, while, for) and time measurements are shown with
and without the optimizations. The same method is tested on grammars of the same
programming languages, in which multiple rules are missing, and again, these grammars
define only a few statement types.

We asked the authors of this method to share the source code, so we could test it and
benchmark it. Unfortunately, we did not receive any response so far.

2.3 Learning context-free grammar rules from a set of pro-
grams

The grammar of a programming language is important because it can be used to develop
e�cient program analysis and modification tools. Sometimes programs are written in
dialects and the grammars of these dialects may not be available.

Dubey et al. propose a technique for reverse engineering context-free grammar rules from
a given set of programs. Using an iterative approach with backtracking, an approximate
grammar is generated [14]. The authors explain the correctness of this approach and
propose a set of optimisations to make it more e�cient.
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2.3.1 Assumptions

• we have a set of correct programs

• we have an approximate grammar (GÕ) for which we know the new terminals

• a single rule is su�cient to express the syntactic construct corresponding to each
new terminal

• the types of missing rules are constructs that involve new keywords, operators or
declaration specifiers

• additional rules in the grammar to be learned (GÕ) are of the form A æ –anew—,
where A is a nonterminal, anew is a new terminal and –, — œ (N fi T )ú

2.3.2 Algorithm

Dubey et al. propose an iterative technique with backtracking [14]. A set of possible
rules is built in each iteration and one of them is added to the grammar. After a
certain number of iterations, the modified grammar is checked to see whether it parses
all the programs or not. If the grammar does not parse all the programs, the algorithm
backtracks to the previous iteration and selects another rule.

At first, Dubey et al. present a method for inferring a single correcting rule from a
set of programs and an approximate grammar. They assume that there exists at least
one complete CFG that is just one rule away from the initial grammar. After that,
they extend this method for multiple correcting rules. The authors propose an iterative
algorithm with backtracking. In each iteration, a set of possible rules corresponding to
a new terminal is built [14].

The authors provide a proof of correctness for the described method for those situations
when a single rule is su�cient to complete the grammar, and show how the proof can be
extended for multiple rules. They also provide some optimizations to make the inference
algorithm practical for programming languages. The goal of these optimizations is to
reduce the number of possible rules by utilising unit productions, or use a modified CYK
parsing algorithm in the rule checking process.

2.3.3 Implementation

Dubey et al. implemented the algorithm in Java and they presented the results of it
over four programming languages: Java, C, MATLAB and Cobol. Apart from that,
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they also performed experiments on a real dialect of C, which is Cú. The experiments
were conducted on a few statement types: for, while, switch, case, break and the like.
The approach does not cover all types of extensions that could happen in programming
languages.

We asked the authors of this method to share the source code, so we could test it and
benchmark it. Unfortunately, we did not receive any response so far.

2.4 Example-Driven Reconstruction of Software Models

Certain reverse engineering methods attempt to build software models from source code
with the help of a suitable parser for that language. Unfortunately, if the parser is not
available, a lot of e�ort needs to be invested in building it [15]. On the other hand, a
complete parser (that recognizes all language constructs) is not typically required and
we usually have access to legacy examples.

Nierstrasz et al. propose an approach that uses the observations specified above to
rapidly and incrementally develop parsers [15]. This method follows a simple set of steps:
specify mappings from source code examples to model elements; use the mappings to
generate a parser; parse as much code as we can; use exceptional cases to develop new
example mappings; and then iterate.

2.4.1 Assumptions

• we have good knowledge of the language to be learned

• we have correct programs written in the language to be learned

• we have a simple, high-level interface for specifying mapping from example code
to model elements

2.4.2 Algorithm

Nierstrasz et al. propose an approach that starts by specifying a set of mappings from
source code examples to model elements [15]. These mappings are used to automatically
generate a parser for the specified examples, that will directly produce model elements.
The parser is applied to the source code. The code pieces that cannot be parsed are
flagged and are used to specify new mappings for specified examples. Adding these new
mappings, a new parser is generated. This parser tries to parse the remaining code
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pieces. The process is repeated until all, or enough of the code is analyzed. "Enough"
in this case is dependent on the reverse engineering goal, e.g. when we have enough
information for a specific reverse engineering task.

The lexical analysis is performed by a simple, generic scanner that breaks source code
files into streams of tokens (identifiers, numbers, comments and the like). After that,
the engineer specifies how these tokens map to the target model elements and constructs
signatures for each case. In the next step, the engineer traverses the example tree and
generates a grammar production for each node that maps to a target element of the
meta-model [15]. From the generated grammar, a parser is automatically constructed.
This parser will build model elements from the parsed code.

2.4.3 Implementation

In order to test this approach, Nierstrasz et al. built a proof-of-concept prototype,
called CodeSnooper, that uses the example-driven model reconstruction. They ap-
plied CodeSnooper to two di�erent case studies: Java and Ruby. The results of their
experiments can be seen in the original paper [15], as well as in the MSc Thesis of Kobel
[16].

We asked the authors of this method to share the source code, so we could test it and
benchmark it. Unfortunately, we did not receive any response so far.

2.5 Distributional Learning of Some Context-Free Lan-
guages with a Minimally Adequate Teacher

Angluin showed that the class of regular languages can be learned from a Minimally
Adequate Teacher (MAT) using membership and equivalence queries [17]. Clark et al.
showed that there is a class of context-free languages, that includes the class of regular
languages, that can be learned in polynomial time from a MAT [18].

Clark proposes an inference algorithm for a class of context-free languages using a MAT
[19], that is an extension of Angluin’s LStar algorithm. The MAT can answer two types
of queries: membership queries - for a given string, the learner can find out if that string
is or is not in the language; and equivalence queries — the learner provides a hypothesis,
and the teacher will either confirm that it is correct, or it will provide a counter example
if it is not.



Chapter 2. Survey of Inference Methods for Programming Languages 12

2.5.1 Assumptions

• we have a large number of correct programs

• we have a Minimally Adequate Teacher (MAT) that can answer membership and
equivalence queries

• the language to be learned belongs to the set of all languages definable by a con-
gruential CFG (Definition 4.5), which includes all regular languages (have only a
finite number of congruence classes) and all NTS languages (the language defined
by a CFG with the property: the set of sentential forms the CFG generates is
unchanged when the rules are used both ways [20])

• not all context-free languages can be learned by using this approach (in particular,
languages which are a union of infinitely many congruence classes are not).

• the production rules are in Chomsky Normal Form (this possibly limits the class of
languages that can be represented, since the classic algorithm to convert any given
context-free grammar to CNF [21] is not proven in [19], to guarantee to preserve
the class of congruent context-free grammars)

2.5.2 Algorithm

The algorithm starts by building an Observation Table (which contains a set of strings
K, a set of contexts F , and a set of grammatical strings D). After initializing the
Observation Table, it adds data to it using the membership oracle, provided by the
MAT. If the table is consistent, a CFG is built from it. The MAT is used again to check
if the language defined by the newly created CFG is equivalent with the language to be
learned.

If the MAT answers positively, the algorithm stops; otherwise, MAT provides a counter-
example. If the MAT discovers overgeneration (the newly created CFG generates strings
that are not in the language), the algorithm adds more features to the observation table.
If, on the other hand, the MAT discovers undergeneration (the newly created CFG
cannot generate all strings in the language), the algorithm adds more strings to K, to
increase the number of equivalence classes.

This algorithm queries the MAT and adds information to the Observation Table until
the MAT positively answers the membership query.
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2.5.3 Implementation

Clark provides a sample run of the algorithm on the Dyck language (language consisting
of balanced strings of parentheses) over the alphabet � = {a, b}. He also explains what
happens with the Observation Table step by step and how the CFG looks after each
iteration.

In the original paper, there is no evidence of testing the algorithm with bigger samples.
We implemented this algorithm and tested it with multiple samples. The algorithm
description, implementation details and experiment results can be found in Section 4.3.

2.6 A Polynomial Algorithm for the Inference of Context
Free Languages

Clark et al. propose a polynomial algorithm for the inference of languages that have two
special characteristics: the finite context property and the finite kernel property [22].
These characteristics are hold by all regular languages, many context-free languages,
and some context-sensitive languages. This class of languages does not include all CFLs,
since not all CFLs have those two characteristics. However it does include languages like
the Dyck languages (language consisting of balanced strings of parentheses) of arbitrary
order.

The authors of this paper present a rich grammatical formalism, called Binary Feature
Grammars (BFG). The class of languages defined by BFGs contains all context-free
languages (CFL) and some non context-free languages. They propose an algorithm that
can identify in the limit, from positive data and a membership oracle, the class of CFLs
with two properties: finite context and finite kernel. Their approach is based on a
generalisation of distributional learning, following the work of [18].

2.6.1 Assumptions

• we have a set of positive data

• we have a membership oracle (an oracle that can tell the learner if a string is in
the language or not)

• the language to be learned has finite context [22] (every string has a finite fiducial
feature set)

• the language to be learned has finite kernel [22] (a finite set K ™ �ú is a kernel
for a language L, if for any set of features F , L(G0(K, F, L)) ´ L)
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2.6.2 Algorithm

The algorithm starts by initializing K, D, F , where K is a finite set of strings, F is a
set of contexts, and D is a list of strings that have been seen so far. After initializing
this structures, the algorithm examines the set of strings T = Con(D) § Sub(D), where
Con(D) is a set of all contexts of a set of strings, and Sub(D) is a set of non-empty
substrings for a set of strings.

If the current hypothesis generates some element of this set that is not in the language,
then it is overgeneralising: we need to add features. If on the other hand we undergen-
eralise, then we add all of the substrings of D to K, and all possible context to F . Using
a membership oracle, a CFG is built from the information stored in K, D and F .

Clark et al. proved that this algorithm runs in polynomial time in the size of the sample,
and makes a polynomial number of calls to the membership oracle [22]. They also proved
that the same algorithm identifies in the limit the class of CFLs with the finite context
property and the finite kernel property.

2.6.3 Implementation

The main contribution of this paper is to show that e�cient learning is possible, with
an appropriate representation [22]. The method presented in this paper rely on using
a membership oracle, but it can be altered to get a PAC-learning result (Probably
Approximately Correct).

Other than multiple formal theorems and proofs, Clark et al. did not present any
information about the implementation of this algorithm or any experimental results.
We asked the authors of this method to share the source code, so we could test it and
benchmark it. One of the authors answered saying that he will share the code after he
tidies it up. We asked again, but we did not receive the source code so far.

2.7 Exbar: Faster Algorithms for Finding Minimal Con-
sistent DFAs

Lang describes Exbar, a powerful algorithm for the exact inference of minimal deter-
ministic automata from given training data (positive and negative) [23]. This algorithm
achieves the highest performance at that time (1999), on a set of graded benchmark prob-
lems that has been posted by Arlindo Oliveira. Lang compares Exbar with the inexact
program ed-beam, which resulted from the Abbadingo DFA learning competition.
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Before Exbar, an algorithm known as bica was considered to be state-of-art in the
grammatical inference community. Bica was introduced by Oliveira one year before
Exbar was developed [24]. From the results showed by Lang, Exbar can solve 774
problems (from a total of 810 benchmark problems) in under 1.1 seconds each, which is
four orders of magnitude faster than bica.

2.7.1 Assumptions

• we have a set of positive and negative training data (marked as such)

• the output of this algorithm is a minimal DFA

2.7.2 Algorithm

The algorithm starts with building the Augmented Prefix Tree Acceptor (Definition
3.6), which embodies the entire training set (positive and negative examples). Then,
the APTA is folded up into a smaller hypothesis by merging various pairs of compatible
nodes. The algorithm operates in the red-blue framework and considers only merges
between red and blue nodes. The basic operation of an algorithm in this framework is
to select a blue node, and either accept it by recoloring it to red, or dispose of it by
merging it with a red node.

The order in which nodes are picked and merged influence the overall performance of
the inference algorithm. One improvement that Exbar has over older algorithms is that
the former avoids latent conflicts by immediately trying to get rid of a blue node. The
criteria used by Exbar, in picking a blue node is firstly choosing the blue nodes that can
be disposed in the fewest ways. The best kind of blue node, according to this criteria,
is the node that cannot be merged with any red node, which ends up with promoting
that node to red. The next best kind is the node that has only one possible merge and
so forth.

When considering merging between a blue node and a red node, one must first check if
this merge respects the "determinization" rule (the entire tree rooted at the blue node
can be merged with the graph rooted at the red node - Definition 3.7).

2.7.3 Implementation

In order to measure its performance, Exbar was tested on 810 benchmarking problems
(each problem containing 20 training strings of length 30). In the experiment results,
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Lang also compares Exbar with bica, showing that the former has better performance
for the benchmarking problems proposed by Arlindo Oliveira.

In the original paper, there is no evidence of testing the algorithm with bigger samples.
We implemented this algorithm and tested it with multiple samples. The algorithm
description, implementation details and experiment results can be found in Section 3.3.

2.8 EDSM: Results of the Abbadingo One DFA Learning
Competition and a New Evidence-Driven State Merg-
ing Algorithm

Abbadingo One DFA Learning Competition was designed to encourage work on algo-
rithms that scale well both to larger DFAs and to sparser training data. The task was
DFA learning from training data, consisting of both positive and negative examples.
As a result of this competition, two state-of-art algorithms for the exact inference of
minimal DFA were proposed.

Lang et al. describe one of these algorithms, the winning algorithm of Rodney Price
(called EDSM), which orders state merges according to the amount of evidence in their
favor [25]. EDSM is a simple and e�ective method for DFA induction from positive
and negative examples. During the competition, Rodney Price realized that in the
average case, a possible merge that calculates more label comparison is more likely to
be valid, because each comparison verifies and strengthens the hypothesis or invalidates
it immediately.

2.8.1 Assumptions

• we have a set of positive and negative training data (marked as such)

• the output of this algorithm is a minimal DFA

2.8.2 Algorithm

Similar to Exbar (Section 3.3), the algorithm starts with building the Augmented Prefix
Tree Acceptor (APTA - Definition 3.6), which embodies the entire training set (positive
and negative examples). After that, the APTA is folded up into a smaller hypothesis by
merging various pairs of compatible nodes. The main insight of EDSM is avoiding bad
merges (which cannot be directly detected when the training data is very sparse). This
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is done by computing merge scores, and firstly perform high scoring merges that have
passed many tests, and therefore are likely to be correct.

Like other similar DFA inference algorithms that work with the APTA, the order of
merges is essential in the overall performance of the method. If Exbar tries to perform
merges as quick as possible, for EDSM is the opposite. EDSM calculates merge scores
for all red-blue pairs and if any merge is valid, performs the merge with the highest
score, or otherwise halt. A merge score is built as follows: for invalid merges (due to the
conflicting labels), is ≠Œ; if there are no labels, is 0; otherwise, the number of labels
minus one.

Because EDSM performs the merge scores for all possible red-blue pairs, it is important
to reduce the number of these pairs. For that reason, EDSM operates in a framework
slightly di�erent from the well known red-blue framework. In this framework, the APTA
is initially colored as follows: the root node is red, its first children are blue and any
other node is white. As an observation, in the classical red-blue framework, we don’t
have white nodes, those nodes are blue.

2.8.3 Implementation

In order to measure its performance, EDSM was tested on 1000 random problems (each
problem having 2000 training strings of length 0-15, and a depth -10 target DFA with
about 64 states).

In the original paper, there is no evidence of testing the algorithm with bigger samples.
We implemented this algorithm and tested it with multiple samples. The algorithm
description, implementation details and experiment results can be found in Section 3.4.

2.9 The Use of Grammatical Inference for Designing Pro-
gramming Languages

In the process of designing a new language (or extending an existing one), the designer
needs a "natural" grammar for that language. The process can be split in three main
steps: the designer prepares a set of sentences suitable for expressing the functions
required of the language; the meaning for each sentence is made explicit by the designer;
the order of the elementary steps defines a natural parsing order for the sentence.

Crespi-Reghizzi et al. consider the third step, and propose an interactive approach for
designing a grammar, where the designer presents a sample of sentences and structures
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as input to a grammatical inference algorithm [26]. The algorithm builds a grammar
which is a generalization of the examples submitted by the designer.

2.9.1 Assumptions

• we have a set of valid programs

• we have a set of pairs (yi, mi), where yi is a sentence, and mi is the corresponding
interpretation sequence

• the language can be defined by a subclass of operator precedence grammars (to
overcome this limitation, a more refined algorithm has been proposed by Crespi-
Reghizzi in [27])

• we had defined the new constructs and we can exemplify them

2.9.2 Algorithm

Crespi-Reghizzi et al. suggest a method that heavily relies on the language designer,
to help the algorithm converge on the target language, by asking positive and negative
examples. Every time the learning algorithm conjectures a new grammar, it outputs all
sentences for that grammar up to a certain length [3].

The designer types on a console a sample St of sentences (and structure descriptions)
that he wants in the language. The algorithm infers a grammar Gt compatible with the
sample, or otherwise outputs an error message. If the conjectured grammar is too large,
there will be sentences in the output that don’t belong and the designer marks them as
such. If the conjectured grammar is too small, there will be sentences missing from the
output and the designer is expected to provide them. The designer’s corrections are fed
back into the algorithm which corrects the grammar and outputs a new conjecture, and
the process repeats until the target grammar is obtained [3].

2.9.3 Implementation

Crespi-Reghizzi et al. suggest (in the conclusion), that the algorithm is implemented and
tested on examples of low complexity. However, the results are not shown [26]. Because
this method heavily relies on the language designer, the results of one experiment cannot
guarantee if the method is e�cient or not.
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Deterministic Finite Automata

3.1 Main Aspects

As expressed in the Chomsky hierarchy (Figure 1.1), type-3 grammars (regular gram-
mars) generate regular languages. These languages can be generated by a finite state
automaton (also known as finite state machine). A deterministic finite automaton (DFA)
is a finite state machine that accepts/rejects finite strings of symbols and only produces
an unique computation of the automaton for each string [28].

Multiple di�erent grammars can define the same language. In the same way, there
can exist multiple di�erent DFAs that accept the same language. When inferring a DFA
from examples, it is desirable to find the smallest (minimal) DFA that accepts the target
language, because the minimal DFA ensures minimal computational cost. Gold showed
that finding the minimal DFA that accepts an unknown regular language from a finite
set of positive and negative samples is NP-complete [29]. This means that the problem
cannot be solved quickly (in polynomial time).

Several algorithms for inferring the minimal DFA were developed throughout the years.
These algorithms generally start by building an augmented prefix tree acceptor (APTA)
from positive and negative sample sets (also known as training sets), then perform
merges in a particular order and by specific rules until no valid merge can be found.
These merges are done in order to generalize the language accepted by the DFA.

In this chapter we analyze, implement and benchmark two algorithms, both considered
state of the art for this task. These algorithms are Lang’s Exbar [23] and Rodney Price’s
EDSM [25] (one of the winners of Abbadingo Learning Competition).

19
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3.2 General Definitions

The general problem of grammatical inference is defined as follows:

Definition 3.1. Given sets of labeled example strings S+ and S- such that S+ µ L(G)
and S- µ LÕ(G) infer a DFA (A) such that the language of A denoted L(A) = L(G).
L(G) is a language generated from an unknown Type-3 grammar (G). Its complement,
LÕ(G), is defined as LÕ(G) = �ú≠L(G) where �ú is the set of all strings over the alphabet
(�) of L(G) [30].

Following Harrison [31], a formal definition of a Type-3 grammar (for regular lan-
guages) is given below:

Definition 3.2. G = {V, �, P, S}, where

• V is a finite set of variables / nonterminals,

• � is a finite set of terminals,

• P ™ V ◊ (� fi V )ú is a finite set of production rules,

• S œ V is referred to as the start state / nonterminal,

and the rules in P are of the form

• A æ aB, or

• A æ a

where A, B œ V and a œ �.

The Deterministic Finite Automaton (DFA) representing Type-3 grammars is a
quintuple. Following Hopcroft et al. [32], a formal definition of a DFA(A) is given
below:

Definition 3.3. A = {Q, �, ”, s, F} where

• Q is a finite non-empty set of states,

• � is a finite non-empty set of input symbols or input alphabet,

• ” : Q ◊ � æ Q the transition function,

• s œ Q the start state,

• F ™ Q the final states or accepting states of A.



Chapter 3. Deterministic Finite Automata 21

Definition 3.4. A training set is a set of pairs T = {(s1, l1), ..., (sm, lm)} where each
pair ((si, li)) œ �ú ◊ {0, 1} represents one input string and the label (or output) that
corresponds to that string [33].

Examples of training sets can be found in next sections (e.g. Subsection 3.6.1).

Definition 3.5. The destination state that results from the application of a string
s = (a1, ..., ak) is applied, denoted by ”(q, s), represents the final state reached by an
automaton after a sequence of inputs (a1, ..., ak), is applied in state q. This state is
defined to be ”(q, s) = ”(”(...”(”(q, a1), a2), ...), ak) [33].

The augmented prefix tree acceptor (APTA) is a 6-tuple. Following Coste et al.
[34], a formal definition of an APTA(S+, S-) is given below:

Definition 3.6. A = {Q, �, ”, s, F +, F -} where

• Q is a finite non-empty set of nodes,

• � is a finite non-empty set of input symbols or input alphabet,

• ” : Q ◊ � æ Q the transition function,

• s œ Q the start or root node,

• F + ™ Q identifying final nodes of strings in S+,

• F - ™ Q identifying final nodes of strings in S-.

Examples of APTA representations can be found in next sections (e.g. Figure 3.1b).

Definition 3.7. Two nodes qi and qj in the APTA are considered not equivalent if
and only if:

1. (qi œ F + and qj œ F -) or (qi œ F - and qj œ F +), or

2. ÷s œ � such than if (qi, s, qi’), (qj, s, qj’) œ ” then qi’ not equivalent to qj’

(implied in Moore’s minimization algorithm [32])
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3.3 Exbar

In 1999, Lang proposed a powerful new algorithm for the exact inference of minimal
deterministic automata from given training data [23]. This algorithm is called Exbar
and it achieves the highest performance (at that time) on a suite of benchmark problems.
Before Exbar, an algorithm known as bica was considered to be state-of-art in the
grammatical inference community. Bica was introduced by Oliveira one year before
Exbar was developed [24].

3.3.1 Algorithm steps

1. Build the augmented prefix tree acceptor (APTA - Definition 3.6) from positive
and negative example strings

• APTA is built from beginning in the red-blue framework (the root node is
red and all other nodes are blue)

• for every sample string, construct a path (each character from that string is
a labeled edge)

• the last node of the new path is labeled (accepted or rejected, depending on
the sample label)

• e.g. for training set 1 (Subsection 3.6.1), the resulting APTA can be seen in
Figure 3.1b

2. Generalize the accepted language by merging pairs of compatible nodes (Exbar)

(a) pick blue node (look first for the blue nodes that cannot be merged with
any of the red nodes and after that, look for blue nodes that have only one
possible merge, two possible merges and so on)

(b) try to merge (the merge is done applying the "determinization" rule (Defini-
tion 3.7)) or promote the blue node to red

(c) start again until no valid merges can be found

3. Build the DFA from the current version of APTA (after all merges)

3.3.2 Algorithm description

Exbar algorithm starts with building the APTA, from there it considers candidate nodes
that are adjacent to a core graph of accepted nodes, and for each candidate it decides
whether to accept it or to view it as identical to a previously accepted node [23].
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The order in which nodes are picked and merged matters, so the main di�erence between
Exbar and previous algorithms is that the former avoids latent conflicts by immediately
trying to perform additional merges. Some of the older algorithms compute merging
scores and choose a candidate based on that score.

The criteria used by Exbar, in picking a candidate blue node, has a strong influence on
the program’s performance. It first chooses the blue nodes that can be disposed of in
the fewest ways. The best kind of blue node is the node that cannot be merged with
any red node, which ends up with promoting that node to red. The next best kind is
the node that has only one possible merge and so forth.

3.3.3 Implementation and benchmarking

The Exbar algorithm is implemented based on the pseudo-code and description found
in Lang’s paper [23]. Due to performance concerns, the chosen programming language
is C++, version 11 and Microsoft Visual C++ 2013 compiler. The C++ source
code is available at https://bitbucket.org/orosu/thesis-cpp, and contains approximately
1400 lines of code in 7 classes.

Prior to this, we also implemented Exbar algorithm in Rascal but we did not continue
with this language due to performance concerns. The Rascal source code is available at
https://orosu@bitbucket.org/orosu/thesis-rascal, and contains approximately 400 lines
of code in 5 modules.

In order to validate the correctness of the algorithm, we manually checked the results
for the first three training sets (Subsections 3.6.1, 3.6.2 and 3.6.3). Figure 3.1 displays
three states of APTA, built from training set 1 (Subsection 3.6.1).

The program is compiled and run for all training sets (Section 3.6). The results can be
seen in Table 3.1.

Sample Training Set (clock_t) APTA (clock_t) Exbar (clock_t)
Training Set 3.6.1 1 57 581
Training Set 3.6.2 0 52 361
Training Set 3.6.3 0 52 365
Training Set 3.6.4 55 1315 12566
Training Set 3.6.5 49 1443 9235
Training Set 3.6.6 37 2402 x*
Note 1: clock_t = clock ticks (processor time consumed by the program)

Note 2: * not successful (stack overflow)

Table 3.1: Benchmarking results Exbar

https://bitbucket.org/orosu/thesis-cpp
https://orosu@bitbucket.org/orosu/thesis-rascal
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Figure 3.1: APTA states for Training Set 1 - Exbar (generated from C++)
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3.4 Evidence Driven State Merging

During the Abbadingo One DFA Learning Competition, one of winners, Rodney Price,
realized that in the average case, a possible merge that calculates more label comparison
is more likely to be valid, because each comparison verifies and strengthens the hypoth-
esis or invalidates it immediately. This observation led to the development of evidence
driven state merging algorithm, also known as EDSM [25]. This algorithm performs
merges in a particular order according to the amount of evidence it has about them.

3.4.1 Algorithm steps

1. Build the augmented prefix tree acceptor (APTA - Definition 3.6) from positive
and negative example strings

• similar to building the APTA for Exbar algorithm, with one small di�erence
(the root node is red, its first level children are blue and the rest of the nodes
are white)

• e.g. for training set 1 (Subsection 3.6.1), the resulting APTA can be seen in
Figure 3.2b

2. Generalize the accepted language by merging pairs of compatible nodes (EDSM)

(a) evaluate all possible merges between red and blue nodes and compute a score
for every merge (conflicting labels: ≠Œ, no labels: 0, otherwise: number of
labels - 1)

(b) if there are any blue nodes that cannot be merged with any red nodes, promote
them and start over

(c) choose the merge with the highest score

(d) the merging is done similar to the merging from Exbar algorithm, with one
di�erence, the former also needs to take care of coloring the white nodes into
blue nodes

(e) start again until no valid merges can be found

3. Build the DFA from the current version of APTA (after all merges)

3.4.2 Algorithm description

Similar to Exbar, EDSM starts with building the APTA, from there it evaluates all
possible merges between red and blue nodes in order to compute merge scores. A merge



Chapter 3. Deterministic Finite Automata 26

score is built as follows: for invalid merges (due to the conflicting labels), is ≠Œ; if there
are no labels, is 0; otherwise, the number of labels minus one [25].

The main di�erence between Exbar and EDSM is that the latter avoids bad merges by
doing high score merges first. These merges already passed many tests and have a higher
probability to be valid.

Another di�erence that needs to be considered is that EDSM also has to color impacted
white nodes to blue, when one blue node is promoted to red or when a blue node is
merged with a red node.

3.4.3 Implementation and benchmarking

The EDSM algorithm is implemented based on the pseudo-code and description found
in Lang’s paper [25] and also in the book "Grammatical Inference: Learning Automata
and Grammars" [35]. Due to performance concerns, the chosen programming language
is C++, version 11 and Microsoft Visual C++ 2013 compiler. The C++ source
code is available at https://bitbucket.org/orosu/thesis-cpp, and contains approximately
1500 lines of code (there are a few reused classes from Exbar) in 7 classes.

Prior to this, we also implemented EDSM algorithm in Rascal but we did not continue
with this language due to performance concerns. The Rascal source code is available at
https://orosu@bitbucket.org/orosu/thesis-rascal, and contains approximately 400 lines
of code (there are a few reused modules from Exbar) in 5 modules.

In order to validate the correctness of the algorithm, we manually checked the results
for first three training sets (Subsections 3.6.1, 3.6.2 and 3.6.3). Figure 3.2 displays three
states of APTA, built from training set 1 (Subsection 3.6.1).

Although the merges are done in di�erent order, due to di�erent search algorithms, we
can notice that the last APTA visualization, representing the final state, is almost the
same with the corresponding one from Exbar. We can also notice that at state i, the
APTA visualizations are quite di�erent, again due to the order of merges.

The program is compiled and run for all training sets (Section 3.6). The results can be
seen in Table 3.2.

https://bitbucket.org/orosu/thesis-cpp
https://orosu@bitbucket.org/orosu/thesis-rascal
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Figure 3.2: APTA states for Training Set 1 - EDSM (generated from C++)

Sample Training Set (clock_t) APTA (clock_t) EDSM (clock_t)
Training Set 3.6.1 1 99 633
Training Set 3.6.2 0 54 372
Training Set 3.6.3 0 58 372
Training Set 3.6.4 55 1687 239776
Training Set 3.6.5 49 1886 323615
Training Set 3.6.6 37 2400 x*
Note 1: clock_t = clock ticks (processor time consumed by the program)

Note 2: * not successful (>10 minutes)

Table 3.2: Benchmarking results EDSM

Insights from replication

While benchmarking EDSM, we noticed that in its original form, the algorithm was
computing merge scores for all possible red - blue combinations before every search.
Because of that, it was not practical for larger training sets (e.g. the training
sets from files). In order to mitigate this problem, we augmented the algorithm
to calculate all merge scores only one time, and after each merge or promotion,
compute the merge scores between the nodes e�ected by that action. In this way,
the execution time decreased and we were able to test with first two training sets
from file (3.6.4 and 3.6.5). The modification changed the merge order but the end
result is equivalent with the original.
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3.5 Discussion

In previous two sections we analysed, implemented and benchmarked two state of the art
algorithms for inferring minimal consistent DFAs. These algorithms are Exbar (Section
3.3) and EDSM (Section 3.4). We compiled and tested these algorithms in the same
way, using the same training sets. The results for each test can be found in the previous
sections.

Both of the algorithms work in similar ways. They start by building the APTA and then
they merge nodes until all valid merges are exhausted. The order in which the nodes
are merged di�ers. This di�erence is quite obvious in the running time, where Exbar
algorithm outperforms EDSM algorithm for all training sets. Exbar never creates latent
conflicts because it immediately tries to perform the merge, while EDSM computes all
merge scores and after that it performs the merge with the highest score.

In the original paper [23], Exbar was tested on 810 benchmark problems (each problem
containing 20 training strings of length 30). In a similar way, in the original paper [25],
EDSM was tested on 1000 random problems (each problem having 2000 training strings
of length 0-15, and a depth -10 target DFA with about 64 states). The results of both
tests can be seen in the original papers. We did not go that far because performance
considerations made it clear that the method is unacceptable for us.

In order to identify the hot paths, we profiled both algorithms individually, using Train-
ing Set from file 1 (Subsection 3.6.4). The results of this profiling can be seen in Figure
3.3.

(a) Profiling Exbar (b) Profiling EDSM

Figure 3.3: Profiling Exbar and EDSM

Analysing the data gathered through profiling the algorithms, we noticed that while
Exbar spends ~83% of the running time searching and merging (half on picking the blue
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node and half on merging), EDSM spends ~81% of the running time building the merge
scores. This highlights the fact that EDSM’s search for the highest score is too expensive
to be practically used for large training sets.

Although Exbar algorithm proved higher performance, it is still not suitable for inferring
a grammar from source code. The reason is that it analyses training sets, char by char.
For a new string, it builds a tree path of length equal to the number of characters in the
string. For large training sets, these trees become too big to be e�ciently handled.
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3.6 Training sets

3.6.1 Training set 1

T1 = {<"1", true>, <"110", true>, <"01", true>, <"001", true>,

<"00", false>, <"10", false>, <"000", false>}

3.6.2 Training set 2

T2 = {<"1", true>, <"11", true>, <"1111", true>,

<"0", false>, <"101", false>}

3.6.3 Training set 3

T3 = {<"a", true>, <"abaa", true>, <"bb", true>,

<"abb", false>, <"b", false>}

3.6.4 Training set from file 1

TF1 = random file that contains php source code

size(TF1) = 7.76 KB (7,949 bytes)

3.6.5 Training set from file 2

TF2 = random file that contains php source code

size(TF2) = 11.8 KB (12,130 bytes)

3.6.6 Training set from file 3

TF3 = random file that contains php source code

size(TF3) = 17.9 KB (18,406 bytes)



Chapter 4

Context-Free Grammars

4.1 Main Aspects

As expressed in the Chomsky hierarchy (Figure 1.1), type-2 grammars (context-free
grammars) generate context-free languages (CFLs). A context-free grammar (CFG) is a
formal grammar in which every production rule can be applied regardless of the context
of a nonterminal. These grammars generate the next smallest class of languages, the
context-free languages, which include all regular languages.

Similar to regular grammars, multiple di�erent CFGs can generate the same CFL.
Polynomial-time algorithms to learn this class of grammars, have also been investigated.
Identifying context-free grammars in polynomial time is considerably more di�cult than
for DFAs, so most polynomial results in the literature either learn a strict subset of CFGs,
use structured strings as input, or both [3]. Unlike DFA inference, there is currently
no known algorithm to identify a general CFL from positive and negative samples in
polynomial time.

In 2008, Clark et al. proposed a polynomial algorithm for the inductive inference of
languages that exhibit two constraints on the context distributions [22]. The algorithm
is based on positive data and a membership oracle. Two years later, Clark proposed
another algorithm for learning CFLs from a Minimally Adequate teacher providing mem-
bership and equivalence queries [19].

In this chapter we analyze, implement and benchmark the algorithm proposed by Clark
for learning some context-free languages with a Minimally Adequate Teacher [19].

31
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4.2 General Definitions

Notations (according to [22] and [19]):

• � is a finite non-empty alphabet, which is known

• �ú is the set of all finite strings of �

• ⁄ is the empty string

• Language L is a subset of �ú

• uv is the concatenation of u and v

• u œ �ú is a substring of v œ �ú, if there are strings l, r œ �ú such that v = lur

• a context (l, r) is a pair of strings, an element of �ú ◊ �ú

• the distribution of a string is CL(w) = {(l, r)|lwr œ L} (set of all contexts of a
string)

• the distribution of a set of strings is CL(S) = fiw œ SCL(w)

• for a string u and a context f = (l, r), f § u = lur is the insertion or wrapping
operation (combines a context with a substring)

• Sub(w) = {u|÷l, r œ �ú, lur = w} is the set of all substrings of a string w

• Sub(S) = fiw œ SSub(w) is the set of all substrings of a set of strings S

• u © Lv means two strings are congruent with respect to a language L, if and only
if CL(u) = CL(v) (equivalence relation)

• [u]L = {v|u © Lv} is the equivalence class of u

Lemma 4.1. For any language L, if u © LuÕ and v © LvÕ then uv © LuÕvÕ [19].

This means that the concatenation between two classes is [u] ¶ [v] = [uv]. This is
a monoid, as it is associative and contains a unit [⁄]; it is called the syntactic monoid:
�ú/ © L.

Definition 4.2. A context-free grammar (CFG) is a quadruple G = (�, V, P, S). �
is a finite alphabet of terminal symbols, V is a set of non terminals such that � fl V =
ÿ, P ™ V ◊ (V fi �)ú is a finite set of productions, S œ V is the start symbol [22].
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Having a production of P : N æ – with N œ V and – œ (V fi�)+, we write uNv ∆ Gu–v

if there is a production N æ – in G. ú=∆ G denotes the reflexive transitive closure of
∆ G [22].

Definition 4.3. An objective context-free grammar is a quadruple G = (�, V, P, I).
� is a finite alphabet of terminal symbols, V is a set of non terminals such that � fl V =
ÿ, P ™ V ◊ (V fi �)+ is a finite set of productions, I is a non-empty subset of V , the set
of initial symbols [19].

Note 1: There are multiple start symbols.
Note 2: We will consider only the case of CFGs in Chomsky Normal Form(CNF), which
means that all productions are of the form N æ PQ, or N æ a or N æ ⁄.
Note 3: One example of a CFG representation can be seen in Figure 4.1.

Definition 4.4. The language defined by a CFG G is L(G) = {w œ �ú|S ú=∆ Gw} [22].

Note 1: One example of a CFL is the Dyck language L = {anbn|n Ø 0}.

Definition 4.5. A context-free grammar (CFG) G is congruential if for every
nonterminal N it is the case that L(G, N) is a subset of a congruence class of L(G); that
is if N

ú=∆ u and N
ú=∆ v implies that u © L(G)v [19].

Note 1: We can assume that we only have one nonterminal for each congruence class.
If we have two nonterminals that generate strings from the same congruence class, then
we can merge them.

Definition 4.6. LCCFG is the set of all languages definable by a congruential CFG
(CCFG) [19].

Note 1: LCCFG includes all regular languages.
Note 2: Not all CFLs are in LCCFG.

Definition 4.7. An observation table consists of a non-empty finite set of strings K,
a non-empty finite set of contexts F and a finite function mapping F § KK to {0, 1}.
Given a context (l, r) in F , and a substring W œ KK, we have a 1 (one) in the table
if lwr is in the language and a 0 (zero) if it is not. We will represent this observation
table as a tuple ÈK, D, F Í, where D is the set of grammatical strings in F § KK [19].

Note 1: One example of an observation table representation can be seen in Table 4.2.

Definition 4.8. For two strings u, v œ KK, we say they are equivalent if they appear
in the same set of contexts, and we write u ≥ Fv [19].
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Definition 4.9. An observation table ÈK, D, F Í is consistent if for all u1, u2, v1, v2 œ
K, if u1 ≥ Fu2 and v1 ≥ Fv2, then u1u2 ≥ Fv1v2 [19].

Note 1: If a table is not consistent, we know that we do not have a large enough set of
features.
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4.3 Learning with MAT

Angluin showed that regular languages can be learned from a Minimally Adequate
Teacher (MAT) using membership and equivalence queries [17]. Using the same ap-
proach, in 2007, Clark et al. showed that some CFGs can be identified in the limit from
positive data alone, by identifying the congruence classes of the language [18]. Three
years later, Clark showed that there is a natural class of CFLs, which includes all regular
languages, that can be learned from a MAT in polynomial time [19]. He proposed a new
algorithm that is an extension of the classic and well-studied LSTAR (also known as Lú)
algorithm, that was introduced by Angluin [17].

A MAT is assumed to answer correctly two types of questions (membership and equiva-
lence) from the learner about the language to be learned. This teacher must be able to
test a hypothesis and reply whether it is correct, and supply a counter-example if not.
Clark proposed a stochastic setting [19], in which the learner gets an approximately
correct hypothesis with high probability. In this scenario, the teacher can be replaced
by a random sampling oracle.

4.3.1 Algorithm steps

4.3.1.1 Initialization

1. Setup the language to be learned L, from positive samples: read line by line from
file(s) and build the alphabet � of the language while adding samples to L

• e.g. for the Dyck language (language consisting of balanced strings of paren-
theses) over the alphabet � = {a, b}, the language L = {⁄, ab, abab, aabb, ...}

2. Setup the Minimally Adequate Teacher (MAT) over the language L, which can
answer membership and equivalence queries

• membership - the learner can find out if a string is in the language L

• equivalence - the learner provides the teacher with a CFG and the teacher
will either confirm if the language defined by that grammar is equivalent with
L, or it will provide a counter-example (it checks for both: overgeneration
and undergeneration)

3. Build the Observation Table (Definition 4.7)

• initialise K = {⁄}, F = {(⁄, ⁄)} and D = {⁄}

• this will be the main data type used to build the CFG



Chapter 4. Context-Free Grammars 36

4.3.1.2 Learn CFG

Execute the following steps until the equivalence query confirms that the language de-
fined by the CFG is equivalent with L:

1. Make the context-free grammar from the current version of the observation table

• build the table and populate D from K and F using the membership oracle

• make the observation table consistent (Definition 4.9)

• split the elements in K into equivalence classes, associate nonterminals to
those classes, and build production rules from these equivalence classes

• the grammar is congruential (Definition 4.5) and in Chomsky Normal Form
(all of its production rules are of the form N æ PQ or N æ a or N æ ⁄)

2. Query the teacher to confirm that the newly made grammar is correct (equivalence)

• check if the grammar undergenerates (there are strings in L that cannot be
generated by this grammar)

• check if the grammar overgenerates (there are strings that can be generated
by the grammar, which are not in L)

3. If the grammar is correct, return it and terminate

4. If the grammar is incorrect, get the counter-example and continue

• if the grammar undergenerates, add positive counter-example w: get all sub-
strings of w and add them to K (to increase the number of congruence classes)

• if the grammar overgenerates, add more contexts until the grammar no longer
generates the counter-example

5. Go to step 1 and execute the same steps again, until the grammar is correct

4.3.2 Algorithm description

This algorithm starts with building an observation table (Definition 4.7) and continues
with filling it by membership querying the MAT. If the table is consistent, a CFG is
generated from it. Based on this grammar, the MAT is queried again to determine if
the language defined by this grammar is equivalent with the language to be learned.

If the grammar is correct, the algorithm terminates; otherwise if the MAT discovers
overgeneration (generates strings that are not in the language), it adds more features
until the grammar no longer generates the string. If, on the other hand it discovers
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undergeneration (does not generate all strings in the language), it adds more strings to
K to increase the number of congruence classes of the language defined by the CFG.

In order to test if all strings in L (language to be learned) are generated by the CFG,
we implemented the CYK algorithm [36]. The purpose of this algorithm is to decide if
a string is in a context-free language or not. It is a good match for our MAT because
the production rules of the CFG are already in CNF.

4.3.3 Implementation and benchmarking

This algorithm is implemented based on the pseudo-code and description found in Clark’s
paper [19]. Due to performance concerns, the chosen programming language is C++,
version 11 and Microsoft Visual C++ 2013 compiler. The C++ source code is
available at https://bitbucket.org/orosu/thesis-cpp, and contains approximately 2000
lines of code in 12 classes.

In order to validate the correctness of the algorithm, we manually checked the results
for the first three samples (Subsections 4.4.1, 4.4.2 and 4.4.3). Figure 4.1 displays the
CFGs after each iteration of the algorithm for sample 1 (Subsection 4.4.1).

The program is compiled and run for all training sets (Section 4.4). The results can
be seen in Table 4.1. We can notice that this algorithm is not suitable for long sample
size (in our case, number of characters per line) because of the way Observation Table
works. The problem is that the table becomes very big, very quick because it needs to
contain all possible substrings of a sample string.

In order to identify the hot paths, we profiled the algorithm, using Training Set 3 (Sub-
section 4.4.3). Based on the results of this profiling, we identified the hottest execution
path. This hot path is ObservationTable :: MakeConsistent() with more that 98% of
the execution resources. This method is called before making a CFG and it makes the
observation table consistent. The reason why this method consumes so many resources
is the heavy method itself. It looks for four strings that satisfy the following criteria:
u1, u2, and v1, v2 in K, and (l, r) œ F such that u1 ≥ Fu2, v1 ≥ Fv2, lu1v1r œ D, and
lu2v2r /œ D.

If we compare this algorithm with the two implemented for DFA, we notice that the
latter algorithms can actually parse source code (files with more than 12 KB), while
the CFG algorithm described above can only practically parse short sample strings (less
than 10 characters per sample). The output of these two types of algorithms is di�erent.
While Exbar and EDSM algorithms output minimal DFAs, the algorithm presented in
this section outputs a CFG with terminals, nonterminals and production rules.

https://bitbucket.org/orosu/thesis-cpp
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Sample Number of iterations Learning with MAT (clock_t)
Training Set 4.4.1 2 25
Training Set 4.4.2 4 118
Training Set 4.4.3 7 12492
Training Set 4.4.4 3 735500
Training Set 4.4.5 3 2737323
Training Set 4.4.6 x* x*
Note 1: clock_t = clock ticks (processor time consumed by the program)

Note 2: * not successful (>120 minutes)

Table 4.1: Benchmarking results Learning with MAT

K\F (⁄, ⁄)
⁄ 1

(a) Step 0

K\F (⁄, ⁄) (⁄, b)
⁄ 1 0
a 0 1
ab 1 0
b 0 0
(b) Step 1 - each row is K

K\F (⁄, ⁄) (⁄, b)
aa 0 0
aab 0 1
aba 0 1
abab 1 0
abb 0 0
ba 0 0
bab 0 0
bb 0 0

(c) Step 1 - each row is KK\ K

Table 4.2: Learning with MAT - Sample 1 Observation Table

� = {⁄}
V = {S}
I = {S}

P = {S æ ⁄}
(a) Step 0

� = {⁄, a, b}
V = {A, B, S}

I = {S}
P = {A æ AS, A æ SA, A æ a,

B æ b, S æ ⁄, S æ AB, S æ SS}
(b) Step 1

Figure 4.1: Learning with MAT - Sample 1 CFG

Insights from replication

While benchmarking, we noticed that in its original form, the algorithm was adding
nonterminals for every equivalence class. Because this equivalence class can be
empty, it can produce unneeded productions and therefore, unneeded nonterminals.
In order to mitigate this problem, we augmented the algorithm to skip empty equiv-
alence classes. For the three small samples, there were no noticeable performance
drawbacks. We did notice that for sample 1 (Subsection 4.4.1), instead of three
steps of iterations and nine production rules in the end, we now have only two steps
of iterations and seven production rules. For the tested samples, this modification
produced smaller grammars that define the same language.
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K\F (⁄, ⁄)
⁄ 1

(a) Step 0

K\F (⁄, ⁄) (⁄, y) (x, ⁄) (x+y, ⁄) (y, ⁄)
⁄ 1 1 1 1 1
+y 0 0 1 0 0
x 1 0 0 0 0
x+ 0 1 0 0 0
x+y 1 0 0 0 0
y 1 0 0 0 0
+y+y 0 0 0 0 0
+yx 0 0 0 0 0
+yx+ 0 0 0 0 0
+yx+y 0 0 0 0 0
+yy 0 0 0 0 0
x++y 0 0 0 0 0
x+x 0 0 0 0 0
x+x+ 0 0 0 0 0
x+x+y 0 0 0 0 0
x+y+y 0 0 0 0 0
x+yx 0 0 0 0 0
x+yx+ 0 0 0 0 0
x+yx+y 0 0 0 0 0
x+yy 0 0 0 0 0
xx 0 0 0 0 0
xx+ 0 0 0 0 0
xx+y 0 0 0 0 0
xy 0 0 0 0 0
y+y 0 0 0 0 0
yx 0 0 0 0 0
yx+ 0 0 0 0 0
yx+y 0 0 0 0 0
yy 0 0 0 0 0

(b) Step 3

Table 4.3: Learning with MAT - Sample 2 Observation Table

� = {⁄}
V = {S}
I = {S}

P = {S æ ⁄}
(a) Step 0

� = {⁄, x, y}
V = {S, S1}
I = {S, S1}

P = {S æ x, S æ y,
S1 æ ⁄}
(b) Step 2

� = {⁄, +, x, y}
V = {A, B, C, S, S1}

I = {S, S1}
P = {A æ SC, B æ CS,
C æ +, S æ SB, S æ x,

S æ y, S1 æ ⁄}
(c) Step 3

Figure 4.2: Learning with MAT - Sample 2 CFG
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4.4 Samples

4.4.1 Sample 1

S1 = {"ab", "abab", "aabb", "aababb"}

Note 1: The Dyck Language.

4.4.2 Sample 2

T2 = {"x", "y", "x+y"}

4.4.3 Sample 3

T3 = {"x", "y", "x+y", "x*y", "x/y", "x-z", "x+y*x", "x/y-z"}

4.4.4 Sample 4

T4 = a simple php file which outputs the empty string

<?php

echo ’’;

4.4.5 Sample 5

T5 = a simple php file which outputs "hi"

<?php

echo ’hi’;

4.4.6 Sample 6

T6 = a simple php file which outputs "hello"

<?php

echo ’hello’;



Conclusion

In this thesis we addressed the problem of inferring a grammar from source code written
in an unknown programming language. We started by defining basic notions of grammars
and language learning, and we briefly described the characteristics of the main learning
models used in grammatical inference. We studied and analysed existing grammatical
inference methods for programming languages, and we addressed their limitations and
applicability in the domain of programming languages.

We have chosen two methods for DFA learning and one for CFG learning, and we
implemented them. We tested the algorithms on multiple samples and the experiment
results are shown in the corresponding sections. For the DFA learning, we implemented
Exbar and EDSM, two state of the art algorithms in their field. We benchmarked
them with the same samples, and we compared and analysed the results. For the CFG
learning, we implemented and benchmarked an algorithm for learning a grammar using
a Minimally Adequate Teacher, introduced by Alexander Clark.

Based on our research and the experiment results, we may say that learning minimal
DFAs from source code is possible and scalable to some extent for mainstream program-
ming languages. Having a DFA, we can develop multiple testing tools that use state
machines as software models, e.g. if we have some state-based model, we can make cov-
erage related claims. Learning CFGs from source code alone (without having a partial
grammar) is also possible, but does not scale to practical problems. There are techniques
to overcome this limitation, e.g. Dubey et al. and Saha et al. [10, 14] propose algorithms
that start with an incomplete grammar and add production rules to complete it.

The applications for grammatical inference are not within the scope of this thesis, and
all presented scenarios are merely examples and sketches for future work. Grammatical
inference is a mature topic and there are multiple published papers, that treat techniques
and algorithms on how to induct grammars of di�erent types of languages. For all that,
there are many hidden assumptions in the published methods, which were made explicit
in this thesis. Also, replication of these methods is not easy, because the authors do not
provide access to their source code.

In the future, we would like to extend and optimize the implemented algorithms, and
try to make them more practical for programming languages. One optimization could
be to introduce tokens, to reduce the number of tree paths for DFAs, and to reduce the
number of congruence classes for CFGs. We would also want to implement and analyse
the algorithms that start with an incomplete grammar (e.g. the method presented by
Dubey et al. [14]).
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