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Abstract. Grammar convergence is a lightweight verification method for estab-
lishing and maintaining the correspondence between grammar knowledge in-
grained in all kinds of software artifacts, e.g., object models, XML schemas,
parser descriptions, or language documents. The central idea is to extract gram-
mars from diverse software artifacts, and to transform the grammars until they
become syntactically identical. The present paper introduces and illustrates the
basics of grammar convergence.

1 Introduction

Grammar convergence is a lightweight verification method for establishing and main-
taining the correspondence between grammar knowledge ingrained in all kinds of soft-
ware artifacts. In fact, it is an integrated method that works purposely across different
programming and specification languages as well as different approaches to software
development. Here are few use cases for grammar convergence:

– Given are Java classes for a specific domain, say financial exchange. There is also
an independently designed XML schema that is meant to standardize that domain.
One needs to establish the agreement between the object model and the schema.

– Given is a compiler for a programming language, say gcc for C++. There is also
a reverse/re- engineering tool for the same language based on a different parsing
infrastructure. One needs to establish that both tools agree on the language at hand.

– Given is an XML-data binding technology. One needs to test the (customizable)
mapping from XML schemas to object models. The oracle for testing relies on
establishing an agreement between XML schemas and object models.

– Given are 3 versions of the Java language specification, with 2 grammars per ver-
sion. One needs to align grammars per version and express the evolution from ver-
sion to version. (We have done such a case study; see the authors’ website.)

The central idea of grammar convergence is to extract grammars from diverse software
artifacts, and to transform the grammars until they become syntactically identical. In
more detail, the method entails the following core ingredients:

1. A unified grammar format that effectively supports abstraction from specialities or
idiosyncrasies of the grammars as they occur in software artifacts in practice.

2. A grammar extractor for each kind of artifact – e.g., a Java extractor maps Java
classes to the unified grammar format.

3. A grammar comparer that determines and reports grammar differences in the sense
of deviations from syntactical equality (if any).



4. A framework for automated grammar transformation that can be used to refactor, or
to otherwise more liberally edit grammars until they become syntactically identical.

The method also entails the following optional ingredients:

5. Grammar convergence may be extended to the ‘instance level’ so that instances (such
as parse trees or XML documents) are also extracted, compared and transformed.

6. The transformations of grammar convergence may be semi-automatically derived
(‘inferred’) from grammar differences.

The present paper only covers the core ingredients 1.-4.

Contributions

– Grammar convergence helps in relating grammar knowledge that is readily in-
grained in diverse forms of software artifacts; it complements the use of genera-
tive (or model-driven) approaches, when they are not used, have not been used, or
cannot (yet) be used.

– Grammar convergence delivers conceptually simple grammar transformations to
software artifacts of kinds that would normally require more complicated transfor-
mations, e.g., XML schemas, and object models. This is possible because of the
abstraction done during extraction.

– An implementation of grammar convergence is publicly available.1

Roadmap §2 describes the basics of grammar convergence and introduces the running
example of the paper. §3 outlines BGF — the BNF-like Grammar Format, i.e., the
unified grammar format that we use in our implementation of grammar convergence.
§4 describes and illustrates the concept of grammar extraction. §5 sketches our suite of
programmable transformations for grammar convergence. §6 discusses related work. §7
concludes the paper.

2 Basics and running example

We use a trivial programming language FL (‘Factorial Language’; available from the
quoted repository) as a running example. That is, we converge grammars for FL that
were obtained from different FL language processors such as interpreters and optimiz-
ers. Here is an illustrative program in the FL language; it defines two functions: one for
multiplication; another for the factorial function; the latter in terms of the former:

mult n m = if (n == 0) then 0 else (m + (mult (n − 1) m))
fac n = if (n == 0) then 1 else (mult n ( fac (n − 1)))

1 https://sourceforge.net/projects/slps/

https://sourceforge.net/projects/slps/
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Fig. 1. The overall convergence graph for the ‘Factorial Language’.

program(Fs) −−> +(function,Fs).
function (N,Ns,E)) −−> name(N), +(name,Ns), @(”=”), expr(E), +(newline).

expr(E) −−> lassoc(ops,atom,binary,E).
expr(apply(N,Es)) −−> name(N), +(atom,Es).
expr( ifThenElse (E1,E2,E3)) −−> reserved(”if”), expr(E1), ...

atom( literal ( I )) −−> int(I).
atom(argument(N)) −−> name(N).
atom(E) −−> @(”(”), expr(E), @(”)”).

ops(equal) −−> @(”==”).
ops(plus ) −−> @(”+”).
ops(minus) −−> @(”−”).

Fig. 2. Definite Clause Grammar for FL. (The clauses construct a term representation; see
the arguments of the various predicates. The DCG leverages higher-order predicates for EBNF-
like expressiveness and left-associative tree construction (c.f., ‘+’ and ‘lassoc’). The priorities on
expression forms are expressed by means of a layered definition; c.f., ‘expr’ vs. ‘atom’.)

Function+ → Program
Name Name+ ”=” Expr Newline+ → Function
Expr Ops Expr → Expr { left , prefer ,cons(binary)}
Name Expr+ → Expr {avoid,cons(apply)}
”if” Expr ”then” Expr ”else” Expr → Expr {cons(ifThenElse)}
”(” Expr ”)” → Expr {bracket}
Name → Expr {cons(argument)}
Int → Expr {cons( literal )}
”−” → Ops {cons(minus)}
”+” → Ops {cons(plus)}
”==” → Ops {cons(equal)}

Fig. 3. SDF grammar for FL. (Only (context-free) SDF productions are shown. Notice that
the ‘defining expression’ of a production appears on the left side of the arrow, and the ‘defined
nonterminal’ on the right side. Productions can be annotated in certain ways between the braces,
e.g., with constructor names (c.f., cons), or directions for disambiguation (c.f., prefer, avoid).)



2.1 Sources of convergence

Fig. 1 shows a convergence tree for some FL components. The leafs of the tree (see
at the top) denote different sources. We use the term source to mean ‘software artifact
containing grammar knowledge’. Here is short description of the sources for FL:

antlr This is a parser description in the input language of ANTLR2. Semantic actions
(in Java) are intertwined with EBNF-like productions.

dcg This is a logic program written in the style of definite clause grammars; c.f. Fig. 2.
sdf This is a concrete syntax definition in the notation of SDF/SGLR3 with scannerless

generalized LR parsing as parsing model; c.f. Fig. 3.
xsd This is an XML schema4 for the abstract syntax of FL.
om This is a hand-crafted object model (Java classes) for the abstract syntax of FL.
jaxb This object model was generated by JAXB5 from an XML schema for FL.

2.2 Targets of convergence

Consider again Fig. 1. The inner nodes and the root denote a number of targets for FL.
We use the term target to mean ‘derived grammars that establish the correspondence
between some sources’. Here is short description of the targets for FL:

topdown The sources antlr and dcg both leverage top-down parsing. Their correspon-
dence can be established by a few simple refactoring steps.

concrete This target converges all concrete syntax definitions. A noteworthy difference
is that sdf uses one expression nonterminal, whereas topdown uses two ‘layers’.

java The sources om and jaxb are both object models whose correspondence can be
established by simple refactoring steps.

abstract The target java and the XML schema are to be converged to an abstract syntax
definition. The corresponding refactorings need to neutralize the style differences
implied by the data models: OO vs. XML.

limit The targets concrete and abstract are converged (to an even more abstract syntax).
For instance, terminals are removed from concrete.

3 BGF — BNF-like Grammar Format

3.1 Design rationale

In principle, we could try to leverage an existing syntax definition formalism (e.g., SD-
F/SGLR (see an earlier footnote) or a meta-modeling facility (e.g., EMF6). In contrast,
we have derived BGF such that it covers the grammar-like expressiveness that we en-
countered in different kinds of software artifacts. Also, BGF allows us to avoid any sort
of bias towards a particular parsing model or other details of operational semantics. For
convenience, we can still represent BGF in other notations (using a generative approach
as in [13]).

2 http://antlr.org
3 http://www.program-transformation.org/Sdf/SGLR
4 http://www.w3.org/XML/Schema
5 http://jaxb.dev.java.net/
6 http://www.eclipse.org/modeling/emf/

http://antlr.org
http://www.program-transformation.org/Sdf/SGLR
http://www.w3.org/XML/Schema
http://jaxb.dev.java.net/
http://www.eclipse.org/modeling/emf/


3.2 BGF concepts

We start with the most trivial aspects:

– Terminals and nonterminals.
– Regular expression-like composition and grouping:
• Sequential composition (infix ‘,’ – also called ‘sequence’).
• Alternative composition (infix ‘;’ – also called ‘choice’).
• Epsilon (’true’) and the ‘empty language’.
• Iteration and optionality (‘*’, ‘+’, ‘?’).

– A production is a pair of ‘defined nonterminal’ and ‘defining expression’.
– A grammar consists of a set of start symbols and a set of productions.

At this point, we have reached ‘representation capability’ for textbook-style BNF and
EBNF (when restricted to context-free syntax). Only few more concepts are needed to
represent essential extras of XML schemas, object models, and algebraic signatures:

Production labels Extraction may populate these labels from names of OO subclasses,
derived XML schema types, or algebraic term constructors. As a bonus, labels are
convenient in addressing productions in programmable grammar transformations.

Expression selectors While a flat record-like grammar structure with top-level se-
lectors is sufficient to represent typical object models, more liberal selectors are
needed to represent arbitrarily nested element declarations of XML Schema.

Simple types Types such as string and int are added to cover the simple types used
in algebraic data types, object models, and XML schemas. Even syntax definitions
indirectly involve simple types through the attributes associated with lexemes.

Universal type This type is a fallback for extraction whenever no precise grammar
structure can be determined, e.g., when mapping the OO base type ‘object’, wild-
cards of XML Schema, or dynamics in functional programming.

Namespaces Various kinds of sources are organized in namespaces, c.f., Java’s pack-
ages for object models, Haskell’s hierarchical module system, or XML Schema’s
foundation on XML namespaces. Such organization can be preserved by extraction.

3.3 Self-representation

In our implementation, BGF is primarily defined by an XML Schema, which natu-
rally, is too voluminous to be shown here. While the XML-based representation of
BGF grammar may be convenient for data exchange, several of our components use
a Prolog-based term notation. (For instance, the transformation component is imple-
mented in Prolog.) Fig. 4 lists the BGF of BGF in the Prolog-based term notation.7 The
interesting status of the shown grammar is that it has been computed from the BGF
that was extracted from the primary XML schema for BGF. That is, we have applied
grammar convergence to align the XML schema with the expected Prolog-based term
notation for BGF.

7 The notation uses predominantly prefix terms with the exception of special list notation and
infix functors ‘,’ and ‘;’ for sequences and choices. Note that optionality is represented via
lists — using the empty list [] for the case of absence, and the singleton list otherwise. Certain
symbols need to be escaped by quotes or parentheses, as one can see in the figure.



g( [g,p,x ,v, l ,n,s , t ], [
p([g ], g , (∗(n(n )), ∗(n(p )))), −− grammar = start symbols + productions
p([p ], p, (?(n( l )), n(n ), n(x ))), −− production = label + LHS + RHS
p([true ], x, true ), −− epsilon
p([ fail ], x , true ), −− empty language
p([v ], x , n(v )), −− values of simple types
p([a ], x , true ), −− all ( universal type)
p([ t ], x , n(t )), −− terminals
p([n ], x , n(n )), −− nonterminals
p([s ], x , (n(s ), n(x ))), −− selector expressions
p ([( ’ , ’ )], x , (n(x ), n(x ))), −− sequence
p ([(;)], x, (n(x ), n(x ))), −− choice
p ([?], x , n(x )), −− optionality
p ([+], x , n(x )), −− 1 or more repetitions
p ([∗], x , n(x )), −− 0,1 or more repetitions
p([ int ], v, true ), −− integer values
p([ string ], v , true ), −− strings
p ([], l , v( string )), −− labels are strings
p ([], n, v( string )), −− nonterminal symbols are strings
p ([], s , v( string )), −− selectors are strings
p ([], t , v( string )) −− terminal symbols are strings

])

Fig. 4. BGF of BGF w/o namespaces.

4 Grammar extraction

4.1 Abstraction by extraction

The limited expressiveness of BGF, when compared to any possible source format,
implies that some of the details of the source format are not conveyed into the extracted
grammar; we call this effect ‘abstraction by extraction’. Such abstraction simplifies
proofs of grammar correspondences at the cost of potentially missing certain kinds
of grammar differences. Here are examples of details that are abstracted away in this
manner; they are grouped by kinds of grammarware:

Parser descriptions
– Semantic actions
– Lexical syntax descriptions
– Precedence declarations

Object models
– Constructors, static methods, initializers
– Specific types of collection classes
– Distinction of classes vs. interfaces and fields vs. methods

Algebraic data types
– Distinction of nominal types vs. types aliases
– Higher-order and quantified types (represented universally)



XML schemas
– Distinction of elements, attributes, complex types, and groups
– Simple type constraints

4.2 Grammar extractors

An extractor is simply a software component that processes a software artifact and pro-
duces a (BGF) grammar. In the typical case, extraction boils down to a straightforward
mapping defined by a single pass over the input. Extractors are preferably implemented
within the computational framework of the source artifact at hand, or in its affinity, e.g.:

– ANTLR: ANTLR
– DCG: Prolog
– Java: java.lang.reflect or com.sun.source.tree
– SDF: ASF+SDF Meta-Environment8 or Stratego/XT9

On the output side, an extractor leverages the XML format for BGF.

4.3 Extraction samples

Fig. 5 contrasts the extraction results for several FL sources. The differences between
the grammars can be summarized as follows:

– Only the ANTLR&DCG&SDF extracts contain terminals.
– The ANTLR&DCG extracts contain expressions layers expr and atom.
– The SDF&XSD extracts contain a single expression layer.
– Only the XSD extract contains selectors.
– The ANTLR&XSD extracts leverage choices.
– The DCG&SDF extracts leverage nonterminals with multiple productions.
– There is also some variation on using production labels.
– More trivially, the grammars disagree on names, upper and lower case.

5 Programmable grammar transformations

In the more preferable case, two different grammars can be refactored to become syn-
tactically identical. We use the term refactoring in the established sense of semantics-
preserving transformations. In the less preferable case, non-semantics-preserving trans-
formations are due, in which case weaker properties should limit the impact.

8 http://www.meta-environment.org/
9 http://strategoxt.org/

http://www.meta-environment.org/
http://strategoxt.org/


BGF extracted from the SDF for FL as of Fig. 3
p([ binary ], ’Expr’ , (n(’Expr’ ), n(’Ops’), n(’Expr’ ))),
p([apply ], ’Expr’ , (n(’Name’), +n(’Expr’ ))),
p([ ifThenElse ], ’Expr’ , ( t ( if ), n(’Expr’ ), t ( then ), n(’Expr’ ), t ( else ), n(’Expr’ ))),
p ([], ’Expr’ , ( t ( ’ ( ’ ), n(’Expr’ ), t ( ’ ) ’ ))),
p([argument], ’Expr’ , n(’Name’)),
p([ literal ], ’Expr’ , n(’ Int ’ )),
p([minus], ’Ops’, t (−)),
p([ plus ], ’Ops’, t (+)),
p([equal ], ’Ops’, t (==))

BGF extracted from the DCG for FL as of Fig. 2
p([ binary ], expr , (n(atom), ∗((n(ops ), n(atom ))))),
p([apply ], expr , (n(name), +n(atom))),
p([ ifThenElse ], expr , ( t ( if ), n(expr ), t ( then ), n(expr ), t ( else ), n(expr ))),
p([ literal ], atom, n( int )),
p([argument], atom, n(name)),
p ([], atom, ( t ( ’ ( ’ ), n(expr ), t ( ’ ) ’ ))),
p([equal ], ops, t (==)),
p([ plus ], ops, t (+)),
p([minus], ops, t(−))

BGF extracted from an ANTLR frontend for FL
p ([], expr , (n(binary ); n(apply ); n(ifThenElse ))),
p ([], binary , (n(atom), ∗((n(ops ), n(atom ))))),
p ([], apply , (n(’ID’ ), +n(atom))),
p ([], ifThenElse , ( t ( if ), n(expr ), t ( then ), n(expr ), t ( else ), n(expr ))),
p ([], atom, (n(’ID’ ); n(’INT’ ); t ( ’ ( ’ ), n(expr ), t ( ’ ) ’ ))),
p ([], ops, ( t (==); t (+); t(−)))

BGF extracted from an XML schema for FL
p ([], ’Function’ , (s(name, v( string )), +s(arg , v( string )), s( rhs , n(’Expr’ )))),
p ([], ’Expr’ , (n(’ Literal ’ ); n(’Argument’);n(’Binary’ ); n(’ IfThenElse ’ ); n(’Apply’ ))),
p ([], ’ Literal ’ , s( info , v( int ))),
p ([], ’Argument’, s(name, v( string ))),
p ([], ’Binary’ , (s(ops, n(’Ops’ )), s( left , n(’Expr’ )), s( right , n(’Expr’ )))),
p ([], ’Ops’, (s( ’Equal’ , true ); s( ’Plus’ , true ); s( ’Minus’, true ))),
p ([], ’ IfThenElse ’ , (s( ifExpr , n(’Expr’ )), s(thenExpr, n(’Expr’ )), s(elseExpr , n(’Expr’ )))),
p ([], ’Apply’ , (s(name, v( string )), +s(arg , n(’Expr’ ))))

Fig. 5. Some extraction results for FL. (Only expression syntax is shown.)

5.1 Transformation properties

We may refer to the semantics of a grammar as the language (set of strings) gener-
ated by the grammar, as it is common for formal languages — for context-free gram-
mars, in particular. With the string-oriented semantics in mind, few transformations
are semantics-preserving. Examples include renaming of nonterminals, and fold/unfold
manipulations. To give an example where different semantics are needed consider the
scenario of aligning a concrete and an abstract syntax.

When necessary, we may apply the algebraic interpretation of a grammar, where
grammar productions constitute an algebraic signature subject to a term-algebraic model.
In this case, the terminal occurrences in any given production do no longer carry se-
mantic meaning; they are part of the function symbol. (Hence, abstract and concrete
syntaxes can be aligned now.) Some transformations that were effortlessly semantics-
preserving w.r.t. the string-oriented semantics, require designated bijective mappings
w.r.t. the term-oriented semantics, e.g., fold/unfold manipulations, but generally, the



term-oriented semantics admits a larger class of semantics-preserving transformations
than the string-oriented one.

For brevity, we omit the discussion of another alternative: graph-oriented semantics.
Transformations that are not semantics-preserving may still be ‘reasonable’ if they

model data refinement [8,25].10 A simple way to think of data refinement in our context
is that a transformation increases or decreases the number of ‘representational options’,
e.g., by making a certain syntactic structure optional or mandatory. Here we assume the
term-oriented semantics with its term-algebraically defined domains.

Some grammar differences may require more arbitrary replacements. In this case,
one would want to be sure that a) indeed no more preserving transformation is possible,
and b) the scope of replacement is as small as possible. To this end, we have developed
an effective strategy, which however is beyond the scope of the present paper.

5.2 Grammar refactoring

Let us demonstrate a number of refactoring operators. In our running example, there are
two sources that are very close to each other: antlr and dcg; c.f., Fig. 5. Both sources
serve top-down parsing. The remaining differences are neutralized by the following
refactorings to be applied to the ANTLR grammar; we show the applications of the
transformation operators combined with an explanatory comment:

renameN(’NEWLINE’, newline) % use lower case
renameN(’INT’, int ) % use lower case
renameN(’ID’, name) % rename ID to name
verticalN (expr) % many expr productions
unchain(p ([], expr , n(apply ))) % inline apply production
unchain(p ([], expr , n(binary ))) % inline binary production
unchain(p ([], expr , n(ifThenElse ))) % inline ifThenElse
verticalN (atom) % many atom productions
deanonymize(p([ literal ], atom, n( int ))) % add label for literals
deanonymize(p([argument], atom, n(name))) % add label for arg refs
verticalN (ops) % many ops productions
deanonymize(p([equal], ops, t (==))) % label == production with equal
deanonymize(p([plus ], ops, t (+))) % label + production with plus
deanonymize(p([minus], ops, t (−))) % label − production with minus

Fig. 6 briefly describes a small suite of refactoring operators. All operators except
permute are semantics-preserving w.r.t. string-oriented semantics. Without exception,
the operators are semantics-preserving w.r.t. term-oriented semantics.

5.3 Grammar editing

We use the term grammar editing for transformations that go beyond refactoring. Let
us consider an example. The antlr and dcg sources of FL use two expression layers
10 We say that a data type (domain) A can be refined to a data type (domain) B, denoted by the

inequality A ≤ B, if there is an injective, total function to : A → B (the representation
function), and a surjective, possibly partial function from : B → A (the abstraction function)
such that from.to = idA, where idA is the identity function on A.



renameN(N1, N2) renames all occurrences of the nonterminal N1 to N2, provided N2 does
not occur in G. There are also operators renameL and renameS for renaming labels and
selectors. In renameS(OL, S1, S2), OL is an optional label; if present, S1 is renamed only
in the scope of the identified production, or globally otherwise.

permute(P ) replaces a production say P ′ by P , where P and P ′ must agree on their defined
nonterminal and (optional) label while their defining expressions must be permutations of
each other (with regard to sequential composition). Here is an example:

– A production: p([ binary ], expr , (n(expr ), n(ops ), n(expr )))
– A permutation: p([ binary ], expr , (n(ops ), n(expr ), n(expr )))

verticalN(N) converts the choice-based definition of N to multiple productions. Each alterna-
tive of the choice becomes another production. An outermost selector, if present, is reused
as a production label (but must not yet be in use in G). The variation verticalP(P ) limits
the conversion to a production P . There is the opposite operator horizontal.

unchain(P ) replaces a chain production P and the production P ′ that defines the nonterminal
of its defining expression by a production that inlines P ′ in P . (There is also the opposite
operator chain.) Here is an example:

– The chain production: p ([], expr ,n( literal ))
– The referenced definition: p ([], literal ,n( int ))
– The result of unchaining: p([ literal ], expr ,n( int ))

deanonymize(P ) replaces an unlabeled production say P ′ by its labeled variant P . There is
also the opposite operator anonymize.

lassoc(P ) replaces list-based recursion by binary recursion. (The ‘l’ in lassoc is for left asso-
ciation hinting at the expected effect at the instance level. There is also an operator rassoc
hence.) Here, P describes binary recursion. Their must be a corresponding production in
G that uses list-based recursion. Here is an example:

– Binary recursion: p([ binary ], expr , (n(expr ), n(ops ), n(expr )))
– List-based recursion: p([ binary ], expr , (n(expr ), ∗((n(ops ), n(expr )))))

Fig. 6. Operators for grammar refactoring. (G refers to the input grammar.)

project(P ) replaces a production say P ′ by P , where P and P ′ must agree on their defined
nonterminal and (optional) label, and the defining expression of P must be a sub-sequence
of the one of P ′ (with regard to sequential composition).

stripTs removes all terminals.

stripSs removes all selectors.

skip(P ) removes a reflexive chain production P .

unite(N1, N2) recursively merges the definitions of N1 and N2 into one by replacing all defin-
ing and using occurrences of N1 by N2.

define(Ps) adds the productions Ps as a definition, assuming that all productions agree on
a defined nonterminal that is used but not yet defined in G. We take the view that an
undefined nonterminal is implicitly defined to be equal to the universal type. Hence, the
define operator essentially ‘narrows’ a definition in a semantic sense. There is also the
opposite operator undefine for discarding the explicit definition of a nonterminal.

Fig. 7. Operators for grammar editing. (G refers to the input grammar.)



(expr and atom), whereas the sdf source only uses one expression layer (and deals with
priorities by extra annotations). The following transformation uses an editing operator
unite to merge the two layers (i.e., nonterminals) in one:

unite (atom, expr)

Consider another example. The grammars in Fig. 5 differ with regard to the grammatical
details regarding FL’s literals and function or argument names. The xsd source uses pre-
cise (simple) types int and string, whereas the other grammars leave the corresponding
nonterminals undefined (because the extraction only returned immediate context-free
structure in those cases). The following transformations resolve the undefined nonter-
minals in accordance to the xsd source:

define ([p ([], name, v( string ))]) % names are strings
define ([p ([], int , v( int ))]) % ints ( literals ) are ints

Consider a final example. The convergence of concrete and abstract syntax definitions
requires a transformation that removes all details that are specific to concrete syntax
definitions. That is, we project away the reference to newline, strip off all terminals,
remove the bracketing production, and permute the ingredients of binary expressions to
resemble prefix instead of infix notation. Thus:

project (p ([], function , (v( string ), +v( string ), t (=), n(expr ))))
stripTs
skip (p ([], expr , n(expr )))
permute(p([binary ], expr , ’ , ’ ([n(ops ), n(expr ), n(expr )])))

Fig. 7 briefly describes a small suite of editing operators. In fact, the editing operators
stripTs and stripSs are semantics-preserving w.r.t. the term-oriented semantics because
terminals and selectors are irrelevant for interpreting a grammar as a signature. All but
one of the remaining operators model data refinement in one direction or the other, i.e.,
from input (I) to output (O), or vice versa: skip: O ≤ I , unite: I ≤ O, define: O ≤ I ,
undefine: I ≤ O. The operator project does not model data refinement; rather it models
‘data disposal’. Its I-to-O mapping for project is total, surjective, non-injective; its O-
to-I mapping is not generally defined.

6 Related work
Interoperability The consistent use of structural and nominal types (to be compared
here with grammar knowledge) is a goal shared with programming-language type sys-
tems, exchange formats, and interface definition languages (IDLs). IDLs are specifi-
cally used in distributed programming. Exchange formats are widely used for any sort
of data- and communication-intensive programming. A domain with classic grammar-
like exchange formats including bridges between different formats is reverse engi-
neering [9, 14]. In the broad context of interoperability, grammar convergence pro-
vides added value in the situation where diverse, related grammar-like knowledge is
ingrained in different software artifacts. The use of extraction and transformation com-
pensates for the lack of consistent use of a common type system, IDL, or exchange
format, and it allows for flexible correspondence relationships.



Testing grammarware The I/O behavior of grammarware (e.g., the acceptor behavior
of a frontend) can be tested by ‘sampling’ — subject to test-data generation and test
suites [16, 19, 23, 31]. Such approaches are specifically useful for differential testing
of grammarware. Grammar convergence is complementary in that it provides a static
verification of the correspondence between different software artifacts based on access
to the internal structure of the artifacts. It can also be applied to specify the ‘distance’
between grammars.

Generators and synchronizers If two artifacts are meant to use the same grammar (type,
etc.) modulo its realization in the software artifact, then, arguably one grammar (or
software artifact) should be generated from the other. One scenario of that kind is XML-
object mapping where object models are derived from XML schemas or vice versa [18].
Another scenario is the provision of text-to-model and model-to-text capabilities in
model-driven engineering, where, for example, a parser description may be generated
from a sufficiently rich (‘annotated’) metamodel [11].

One may go beyond generation, and even require bidirectional synchronization be-
tween scattered grammar knowledge, akin to bidirectional model/model or model/code
synchronization in model-driven engineering [32]. As should be clear from the list of
use cases in the introduction, grammar convergence is applicable even when genera-
tors or bidirectional synchronizers are not, have not been, or cannot (yet) be used for
whatever technical or other reason. In particular, existing components do not need to
be adapted, in any way, when applying the method of grammar convergence.

As an illustration, let us consider two concrete scenarios. First, consider the prob-
lem of different versions of a highly idiosyncratic parser description [27]. Bidirectional
synchronization is not available in this context, but grammar convergence applies, and
establishes the correspondence between the grammar versions. Second, consider the
derivation of a technology-specific parser description from a technology-neutral base-
line grammar. Only simpler cases of this process can be automated [13, 11].

Grammar recovery Our work is heavily influenced by the idea of grammar recov-
ery [2, 6, 10, 17, 20, 30], especially those forms that begin with the extraction of gram-
mar knowledge from an artifact like a standard (containing syntax) or an implemen-
tation (based on an idiosyncratic parsing technology). Just like grammar convergence,
grammar recovery involves (manual or automated) grammar transformations, which we
discuss below. While grammar recovery has focused on (mostly concrete) syntax defi-
nitions, grammar convergence applies to a very broad interpretation of grammars (XML
schemas, object models, etc.). Grammar recovery is a reverse-engineering method that
relies on conservative parser testing to derive a quality grammar from the source. In
contrast, grammar convergence is a verification method that establishes and maintains
grammatical correspondences between software artifacts.

Grammar transformation (Automated) grammar transformation has seen a surge of in-
terest over the last decade, but the concept is much older because parsing technologies
tend to require some internal transformations, c.f., the classic example of left-recursion
removal [1,22,24]. There are several modern use cases for grammar transformation that
support automated software engineering and grammar-based programming in one way
or another: grammar recovery (see above), derivation of an abstract from a concrete



syntax [33], problem-specific customization of grammars [4], and mediation between
different grammar classes [28]. Ultimately, we speak of grammar programming or pro-
grammable grammar transformations [3].

Grammar convergence relies on an advanced operator suite for grammar transfor-
mation the design of which is driven by the unified grammar format, and the kinds of
grammar differences that we have encountered. The design of the operator suite has
not yet fully stabilized; we are still pursuing research on principled properties of gram-
mar transformations — at all levels: single operators, operator suites, and sequences of
operator applications. This work is based on earlier research by the first author [15,21].

Grammar convergence Finally, we mention grammar engineering techniques that can
be seen as specific forms of grammar convergence. In [2], the compatibility of (different
implementations of) precedence rules in grammars is checked. Our (current) grammar
convergence approach does not address any parsing techniques specifically, but in re-
turn, it is more generic (with regard to the notion of grammar), and programmable
(with regard to deltas between grammars). In [12], the correspondence between a con-
crete and abstract syntax definition is addressed: the specifications for both syntaxes
may be incomplete, as long as they complement each other consistently. Grammar con-
vergence provides a general tool for ‘programming’ such relationships, and verifying
them. In [27], the problem of proliferation of grammar-based artifacts (in fact, parser
descriptions with semantic actions) due to grammar evolution or always new grammar
use cases is addressed. Based on ideas of version control, a parser description remains
associated with its ‘prototype’, so that revisions of the prototype can be signaled to
derivatives. Grammar convergence also covers this scenario, except that it cannot detect
modifications that are gone after grammar extraction.

7 Concluding remarks

If unit testing is the simple, pragmatic, and effective method to generally validate the
I/O behavior of software modules, then grammar convergence is the simple, pragmatic,
and effective method to keep scattered grammar knowledge ‘in sync’. The method can
also be used to capture and henceforth verify the differences between scattered grammar
knowledge — both intended differences (due to evolution or implementational choices)
and accidental differences (that cannot be resolved immediately). In one case study
(see the authors’ website), we have applied the method to the various grammars in the
Java language specification; we have accurately captured the evolution from version to
version, and we have spotted a substantial number of inconsistencies.

We currently work on the application of grammar convergence at the instance level
(c.f., XML trees, derivation trees, parse trees, etc.) so that one can compare and con-
verge ‘data’ from different software artifacts. Our implementation already supports
some operators at the instance level so that instances of one grammar can be converted
to instances of another grammar.

Our current implementation of grammar convergence does not infer transformation
candidates in any way; the software engineer must use the output of grammar compar-
ison intelligently. This is an obvious target for future work, and we expect useful input
from other areas of software engineering: schema matching and data integration in the



field of data modeling and databases [29]; comparison of UML models or metamodels
in the context of model-driven engineering [34,7]; the computation of refactorings from
different OO program versions [26, 5].
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