
F L I P P E D G R A D U A T E C L A S S R O O M
I N A H A S K E L L - B A S E D
S O F T W A R E T E S T I N G C O U R S E

W O R K S H O P O N T R E N D S I N F U N C T I O N A L P R O G R A M M I N G I N E D U C A T I O N

J A N V A N E I J C K A N D V A D I M Z A Y T S E V

O
nd

er
w

ijs
ge

k,
 E

m
pt

y
cl

as
sr

oo
m

, 2
01

1.
 C

C
-B

Y-
SA

.

http://ivi.uva.nl/
https://commons.wikimedia.org/wiki/File:Empty_classroom.jpg

M A S T E R S O F T W A R E E N G I N E E R I N G

• One year Master of Science programme at UvA

• Drifted away from computer science

• Courses taught:

• software construction, evolution, testing

• architecture, process, requirements

• Programmer in, software engineer out

http://www.software-engineering-amsterdam.nl

http://www.software-engineering-amsterdam.nl
http://ivi.uva.nl/
http://ivi.uva.nl/

S O F T W A R E [S P E C I F I C A T I O N &] T E S T I N G

• The FM view on software engineering

• ideas ⟺ models/specs ⟺ programs
• logic reasoning, math notation, …

• The FP view on software

• focus on the data flow instead of boilerplate

• Type systems

• as an example of a software system specification

L E A R N I N G O B J E C T I V E S [B L O O M]

• (1) to recognise various testing techniques  
applied in SE

• (2) to compare testing techniques by applicability in certain
scenarios

• (3) to implement formal specifications of software systems
and test such systems for conformance

• (4) to differentiate among alternative approaches to testing

• (5) to argue in favour of one testing approach against another

• (5) to judge efficiency of a given model for testing
Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths, Wittrock, A Taxonomy for Learning, Teaching,

and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, 2000.

6 . c r e a t i n g

5 . e v a l u a t i n g

4 . a n a l y s i n g

3 . a p p l y i n g

2 . u n d e r s t a n d i n g

1 . r e m e m b e r i n g

C U R R E N T F O R M (2 0 1 3)
• two months, two full days a week (6 EC)

• a book;

• a weekly lecture (one group of 60 students);

• a weekly workshop (two hours, in groups of 20 students);

• 1½ day programming practical studies [obligatory]

• weekly sets of assignments (Haskell, in groups of 2–5)

• relatively positive evaluation by students

http://homepages.cwi.nl/~jve/HR/

W H Y T H E C H A N G E ?

• x == y || elem (x,y) (tc (r ++ (inv r)))

• x = y ∨ (x,y) ∈ (R ∪ R⁻¹)⁺

E X A M P L E

Question 3 Let R be a binary relation on A. Two elements x and y of A are called weakly R-connected

if there is a path of forward or backward R steps from x to y. It is allowed that this path is empty, so
every point is weakly R connected to itself.

Suppose a function tc :: Ord a => Rel a -> Rel a for the transitive closure of a relation and a function
inv :: Ord a => Rel a -> Rel a for inverting a relation are given. Use these to define a function

wConnected :: Ord a => Rel a -> a -> a -> Bool

wConnected r x y = ...

Fill in the dots. Next, indicate how you would argue for the correctness of your implementation.

3

Jan van Eijck, Paper Exam Software Specification and Testing, 21 October 2013.

• x == y || elem (x,y) (tc (r ++ (inv r)))

• x = y ∨ (x,y) ∈ (R ∪ R⁻¹)⁺

E X A M P L E

Question 3 Let R be a binary relation on A. Two elements x and y of A are called weakly R-connected

if there is a path of forward or backward R steps from x to y. It is allowed that this path is empty, so
every point is weakly R connected to itself.

Suppose a function tc :: Ord a => Rel a -> Rel a for the transitive closure of a relation and a function
inv :: Ord a => Rel a -> Rel a for inverting a relation are given. Use these to define a function

wConnected :: Ord a => Rel a -> a -> a -> Bool

wConnected r x y = ...

Fill in the dots. Next, indicate how you would argue for the correctness of your implementation.

3

Jan van Eijck, Paper Exam Software Specification and Testing, 21 October 2013.

• x == y || elem (x,y) (tc (r ++ (inv r)))

• x = y ∨ (x,y) ∈ (R ∪ R⁻¹)⁺

E X A M P L E

Question 3 Let R be a binary relation on A. Two elements x and y of A are called weakly R-connected

if there is a path of forward or backward R steps from x to y. It is allowed that this path is empty, so
every point is weakly R connected to itself.

Suppose a function tc :: Ord a => Rel a -> Rel a for the transitive closure of a relation and a function
inv :: Ord a => Rel a -> Rel a for inverting a relation are given. Use these to define a function

wConnected :: Ord a => Rel a -> a -> a -> Bool

wConnected r x y = ...

Fill in the dots. Next, indicate how you would argue for the correctness of your implementation.

3

Jan van Eijck, Paper Exam Software Specification and Testing, 21 October 2013.

• x == y || elem (x,y) (tc (r ++ (inv r)))

• x = y ∨ (x,y) ∈ (R ∪ R⁻¹)⁺

E X A M P L E

Question 3 Let R be a binary relation on A. Two elements x and y of A are called weakly R-connected

if there is a path of forward or backward R steps from x to y. It is allowed that this path is empty, so
every point is weakly R connected to itself.

Suppose a function tc :: Ord a => Rel a -> Rel a for the transitive closure of a relation and a function
inv :: Ord a => Rel a -> Rel a for inverting a relation are given. Use these to define a function

wConnected :: Ord a => Rel a -> a -> a -> Bool

wConnected r x y = ...

Fill in the dots. Next, indicate how you would argue for the correctness of your implementation.

3

Jan van Eijck, Paper Exam Software Specification and Testing, 21 October 2013.

• x == y || elem (x,y) (tc (r ++ (inv r)))

• x = y ∨ (x,y) ∈ (R ∪ R⁻¹)⁺

E X A M P L E

Question 3 Let R be a binary relation on A. Two elements x and y of A are called weakly R-connected

if there is a path of forward or backward R steps from x to y. It is allowed that this path is empty, so
every point is weakly R connected to itself.

Suppose a function tc :: Ord a => Rel a -> Rel a for the transitive closure of a relation and a function
inv :: Ord a => Rel a -> Rel a for inverting a relation are given. Use these to define a function

wConnected :: Ord a => Rel a -> a -> a -> Bool

wConnected r x y = ...

Fill in the dots. Next, indicate how you would argue for the correctness of your implementation.

3

Jan van Eijck, Paper Exam Software Specification and Testing, 21 October 2013.

P R O B L E M :
n o t e n o u g h p r a c t i c e

S T U D E N T E V A L U A T I O N

• Unfortunately, the assessment was totally Haskell based, whereas
we also learned a lot of non-Haskell material.

• we could have spent our time on also other important topics in
software testing instead of logic and learning haskell

• I expected to learn more about software testing and this course
was about logic

• Too much freaky math, but no real-life problems.

• There is no point at which this course connects to my professional
career. 
Doing math-stuff with math-problems is the opposite of interesting.

P R O B L E M :
t h e l i n k i s n o t a p p a r e n t

• I found learning Haskell on
my own very difficult.

• The study load was very
high due to the
requirement to learn the
Haskell language
ourselves.

• [study load] WAY TOO HIGH

P O L A R E V A L U A T I O N

• The study load for me was
low, because I used
Haskell before

• The lab assignements
were of good quality and
fun to do.

• Really nice assignments!
(Although the last one
could have been made a
bit more challenging...)

P R O B L E M :
h e t e r o g e n e o u s b a c k g r o u n d

W H A T W A S G O O D ?

• Appreciated parts:

• modern technology

• well-designed assignments

• complementary reading

• feedback on code [“late and brief”]

• q&a sessions

Simon Oxley, Original Octocat, logo.

http://octodex.github.com/original/
http://octodex.github.com/faq.html

C A N W E
s a v e t h e g o o d p a r t s
& i m p r o v e t h e r e s t ?

Y E S W E C A N

• Premaster course on FP

• Flipped classroom

• Guest lectures

• Integration with the paper sessions

• Hack sprints & competitive exercises

W H A T I S F L I P P E D E D U C AT I O N ?

• (cf. Education Freedom Day 2014)

• Lecture & homework elements are reversed

• “Sage on the stage” ⟹ “guide on the side”

• Known since 199x, popular in 201x

• Claimed better use of class time

• Not a silver bullet

7 Things You Should Know About the Flipped Classroom (EDUCAUSE, 2012, CC-BY-NC-ND)
Vadim Zaytsev, Flipped Education, Education Freedom Day 2014.

https://ctl.utexas.edu/sites/default/files/7%20Things%20You%20Should%20Know%20about%20the%20Flipped%20Classrooms%20EDUCAUSE%20%C2%A92012.pdf
http://grammarware.net/talks/#EFD2014

C L A S S I C E D U C A T I O N

Students Instructor

Before Class Homework (Reading §§) “Homework” (Prep)

In Classroom No Idea Assume Usability

During Class Follow Get Through

After Class Homework (Assignments) “Homework” (Grading)

Away Request Confirmation Repeat

WHAT is the Flipped Classroom? (University of Texas at Austin)

https://ctl.utexas.edu/teaching/flipping_a_class/what_is_flipped

F L I P P E D E D U C A T I O N

Students Instructor

Before Class Learn & Answer Questions “Homework” (Prep)

In Classroom Specific Questions Anticipate Questions

During Class Practice Skills Being Learnt Guide With Feedback

After Class Continue To Practice Post Additional Info

Away Seek Help When Needed Continue To Guide

WHAT is the Flipped Classroom? (University of Texas at Austin)

https://ctl.utexas.edu/teaching/flipping_a_class/what_is_flipped

E X P E C T A T I O N S

• Each student learns at her/his pace

• never proceeding without mastery

• Better contact with students

• “lecture” deals with their questions, not our expectations

• Selective & extensive exemplification

• understand from 0, 1, …, 20 examples

• Analytics & diagnostics for further improvement

R E D E S I G N S U M M A R Y
• Split each lecture into separate smaller topics

• Per consumable topic,

• §§, video clips
• multiple examples
• microtests for self-assessment
• open questions to discuss later in class

• In lab assignments,

• mostly the same structure
• clearly identified goal for competition
• occasional hack-sprints

• Presentations: each student reports about one testing method

+ A s k - E l l e ?

http://ideas.cs.uu.nl/FPTutor/

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://homepages.cwi.nl/~jve/HR/
http://www.cs.nott.ac.uk/~gmh/book.html
http://www.haskellcraft.com/craft3e/Home.html
http://www.cs.yale.edu/homes/hudak/SOE/
http://www.haskell.org/haskellwiki/Haskell_Tutorial_for_C_Programmers
http://www.yesodweb.com/
http://www.computational-semantics.eu/

C O N C L U S I O N

• Teaching Haskell at graduate level

• for advanced software engineers

• Flipped classroom + contests + guest lectures

• More details in the full paper, also ask Jan & Vadim.

• First run in Sep-Oct 2014.

• Thank you for attention and feedback!

• Din Alternate Bold font by Linotype Library GmbH.

• Slides are CC-BY-SA: grammarware.net/talks/#TFPIE2014
Yanjing Wang, _20_0429, Feb 2007.

http://homepages.cwi.nl/~jve/
http://grammarware.net/
http://grammarware.net/talks/#TFPIE2014
http://www.cwi.nl/~yanjing/
http://www.flickr.com/photos/yanjing/384034603/
http://github.com/grammarware/bx-parsing

